中值滤波与均值滤波_第1页
中值滤波与均值滤波_第2页
中值滤波与均值滤波_第3页
中值滤波与均值滤波_第4页
中值滤波与均值滤波_第5页
已阅读5页,还剩51页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、n所谓的信号噪声,是信号在摄取时或是所谓的信号噪声,是信号在摄取时或是 传输时所受到的传输时所受到的随机干扰信号随机干扰信号。 n常见的有常见的有椒盐噪声椒盐噪声和和高斯噪声高斯噪声。 信号噪声的概念 n椒盐噪声的特征椒盐噪声的特征: : 出现位置是随机的,但噪声的幅值是基本相同出现位置是随机的,但噪声的幅值是基本相同 的。的。 n高斯噪声的特征:高斯噪声的特征: 出现在位置是一定的(每一点上),但噪声的出现在位置是一定的(每一点上),但噪声的 幅值是随机的。幅值是随机的。 图像噪声的概念 n设计噪声抑制滤波器,在尽可能保持原设计噪声抑制滤波器,在尽可能保持原 图信息的基础上,抑制噪声。图信息

2、的基础上,抑制噪声。 n均值滤波器均值滤波器 n中值滤波器中值滤波器 n边界保持类滤波器边界保持类滤波器 图像噪声的抑制方法 均值滤波器 原理 n在图像上,对在图像上,对待处理的像素待处理的像素给定一个模板,给定一个模板, 该模板包括了其周围的邻近像素。将模板中该模板包括了其周围的邻近像素。将模板中 的全体像素的的全体像素的均值均值来替代原来的像素值的方来替代原来的像素值的方 法。法。 1 09 1 1 1 1 1 1 1 1 1 H 以模块运算系数表示即:以模块运算系数表示即: 12143 12234 57689 57688 56789 12143 12234 57689 57688 567

3、89 344 456 67 8 C=6.6316C=5.5263 均值滤波器 处理方法 待处理像素待处理像素 示例示例 边框保留不变的效果示例边框保留不变的效果示例 均值滤波器的改进 加权均值滤波 n均值滤波器的缺点是,会使图像变的模糊,原因均值滤波器的缺点是,会使图像变的模糊,原因 是它对所有的点都是同等对待,在将噪声点分摊是它对所有的点都是同等对待,在将噪声点分摊 的同时,将景物的边界点也分摊了。的同时,将景物的边界点也分摊了。 n为了改善效果,就可采用加权平均的方式来构造为了改善效果,就可采用加权平均的方式来构造 滤波器。滤波器。 均值滤波器的改进 加权均值滤波 111 121 111

4、10 1 1 H 121 242 121 16 1 2 H 111 101 111 8 1 3 H 00 1 00 4 1 4 1 4 1 4 1 2 1 4 H n 如下,是几个典型的加权平均滤波器。如下,是几个典型的加权平均滤波器。 示例示例 示例示例 示例示例 示例示例 中值滤波器 问题的提出 n虽然均值滤波器对噪声有抑制作用,但同时会虽然均值滤波器对噪声有抑制作用,但同时会 使图像变得模糊。即使是加权均值滤波,改善使图像变得模糊。即使是加权均值滤波,改善 的效果也是有限的。的效果也是有限的。 n为了有效地改善这一状况,必须改换滤波器的为了有效地改善这一状况,必须改换滤波器的 设计思路,

5、中值滤波就是一种有效的方法。设计思路,中值滤波就是一种有效的方法。 中值滤波器 设计思想 n因为噪声(如椒盐噪声)的出现,使该点像素比因为噪声(如椒盐噪声)的出现,使该点像素比 周围的像素亮(暗)许多。周围的像素亮(暗)许多。 n如果在某个模板中,对像素进行由小到大排列的如果在某个模板中,对像素进行由小到大排列的 重新排列,那么最亮的或者是最暗的点一定被排重新排列,那么最亮的或者是最暗的点一定被排 在两侧。在两侧。 n取模板中排在中间位置上的像素的灰度值替代待取模板中排在中间位置上的像素的灰度值替代待 处理像素的值,就可以达到滤除噪声的目的。处理像素的值,就可以达到滤除噪声的目的。 中值滤波器

6、 原理示例 数值排序数值排序 m-2m-1mm+1m+2 610258 mm+1m - 2m+2m - 1 6 10258 26 2 中值滤波器 处理示例 例:模板是一个1*5大小的一维模板。 原图像为:2 2 6 2 1 2 4 4 4 2 4 处理后为: 2 2 (1,2,2,2,6) 2 (1,2,2,2,6) 2 (1,2,2,4,6) 2 2 4 4 4 4 4 (2,4,4) 中值滤波器 滤波处理方法 n与均值滤波类似,做与均值滤波类似,做3 3* *3 3的模板,对的模板,对9 9个数排个数排 序,取第序,取第5 5个数替代原来的像素值。个数替代原来的像素值。 中值滤波器 例题

7、12143 12234 57689 57688 56789 12143 12234 57689 57688 56789 234 566 678 C=6.6316 C=5.5263 示例示例 中值滤波器与均值滤波器的比较 n对于对于椒盐噪声椒盐噪声,中值滤波效果比均值滤,中值滤波效果比均值滤 波效果好。波效果好。 中值滤波器与均值滤波器的比较 n原因:原因: n椒盐噪声是幅值近似相等但随机分布在不椒盐噪声是幅值近似相等但随机分布在不 同位置上,图像中同位置上,图像中有干净点也有污染点有干净点也有污染点。 n中值滤波中值滤波是选择适当的点来替代污染点的是选择适当的点来替代污染点的 值,所以处理效果

8、好。值,所以处理效果好。 n因为噪声的均值不为因为噪声的均值不为0 0,所以,所以均值滤波均值滤波不能不能 很好地去除噪声点。很好地去除噪声点。 中值滤波器与均值滤波器的比较 n对于对于高斯噪声高斯噪声,均值滤波效果比均值滤,均值滤波效果比均值滤 波效果好。波效果好。 中值滤波器与均值滤波器的比较 n原因:原因: n高斯噪声是幅值近似正态分布,但高斯噪声是幅值近似正态分布,但分布在每点分布在每点像像 素上。素上。 n因为图像中的每点都是污染点,所以因为图像中的每点都是污染点,所以中值滤波中值滤波选选 不到合适的干净点。不到合适的干净点。 n因为正态分布的均值为因为正态分布的均值为0 0,所以,

9、所以均值滤波均值滤波可以消除可以消除 噪声。噪声。(注意:实际上只能减弱,不能消除。)注意:实际上只能减弱,不能消除。) 边界保持类平滑滤波器 问题的提出 n经过平滑滤波处理之后,图像就会变得模糊。经过平滑滤波处理之后,图像就会变得模糊。 n分析原因,在图像上的景物之所以可以辨认清楚分析原因,在图像上的景物之所以可以辨认清楚 是因为目标物之间存在边界。是因为目标物之间存在边界。 n而边界点与噪声点有一个共同的特点是,都具有而边界点与噪声点有一个共同的特点是,都具有 灰度的跃变特性。所以平滑处理会同时将边界也灰度的跃变特性。所以平滑处理会同时将边界也 处理了。处理了。 边界保持类平滑滤波器 设计

10、思想 n为了解决图像模糊问题,一个自然的想为了解决图像模糊问题,一个自然的想 法就是,在进行平滑处理时,首先判别法就是,在进行平滑处理时,首先判别 当前像素是否为边界上的点当前像素是否为边界上的点,如果是,如果是, 则不进行平滑处理;如果不是,则进行则不进行平滑处理;如果不是,则进行 平滑处理。平滑处理。 K近邻(KNN)平滑滤波器 原理分析 n边界保持滤波器的核心是确定边界点与非边界边界保持滤波器的核心是确定边界点与非边界 点。点。 n如图所示,点如图所示,点1 1是黄色区域的非边界点,点是黄色区域的非边界点,点2 2是是 蓝色区域的边界点。蓝色区域的边界点。 n点点1 1模板中的像素全部模

11、板中的像素全部 是同一区域的;是同一区域的; 点点2 2模板中的像素则包模板中的像素则包 括了两个区域。括了两个区域。 1 2 K近邻(KNN)平滑滤波器 原理分析 n在模板中,分别选出在模板中,分别选出5 5个与点个与点1 1或点或点2 2灰度值最灰度值最 相近的点进行计算,则不会出现两个区域信息相近的点进行计算,则不会出现两个区域信息 的混叠平均。的混叠平均。 n这样,就达到了边界保持这样,就达到了边界保持 的目的。的目的。 1 2 K近邻(KNN)平滑滤波器 实现算法 1) 1) 以待处理像素为中心,作一个以待处理像素为中心,作一个mm* *mm的作用的作用 模板。模板。 2 2)在模板

12、中,选择)在模板中,选择K K个与待处理像素的灰度差个与待处理像素的灰度差 为最小的像素。为最小的像素。 3 3)将这)将这K K个像素的灰度均值替换掉原来的像素个像素的灰度均值替换掉原来的像素 值。值。 K近邻(KNN)平滑滤波器 例题 例:下图,给定例:下图,给定3 3* *3 3模板,模板,k=5k=5。 12143 12234 57689 57688 56789 12143 12234 57689 57688 56789 223 678 768 (1+1+2+2+2)/5=1.6=2(1+2+2+2+3)/5=2(2+3+3+4+4)/5=3.2=3(5+6+6+7+7)/5=6.2=

13、6(6+6+7+7+8)/5=6.8=7(6+8+8+8+9)/5=7.8=8(6+6+7+7+7)/5=6.6=7(6+6+6+7+7)/5=6.4=6(7+8+8+8+8)/5=7.8=8 K近邻(KNN)平滑滤波器 效果分析 n首先来看一下首先来看一下KNNKNN平滑滤波平滑滤波的效果。的效果。 nKNNKNN滤波器因为有了边界保持的作用,所以在去滤波器因为有了边界保持的作用,所以在去 除椒盐以及高斯噪声时,对图像景物的清晰度保除椒盐以及高斯噪声时,对图像景物的清晰度保 持方面的效果非常明显。持方面的效果非常明显。 n当然,所付出的代价是:算法的复杂度增加了。当然,所付出的代价是:算法的

14、复杂度增加了。 K近邻(KNN)平滑滤波器 效果分析 n首先来看一下首先来看一下KNNKNN平滑滤波平滑滤波的效果。的效果。 nKNNKNN滤波器因为有了边界保持的作用,所以在去滤波器因为有了边界保持的作用,所以在去 除椒盐以及高斯噪声时,对图像景物的清晰度保除椒盐以及高斯噪声时,对图像景物的清晰度保 持方面的效果非常明显。持方面的效果非常明显。 n当然,所付出的代价是:算法的复杂度增加了。当然,所付出的代价是:算法的复杂度增加了。 对称近邻平滑滤波器 基本原理 n算法示意图如下,从模板中的对称点对寻找与 待处理像素相同区域的点。然后对选出的点做 均值运算。 1/4*(a1+b1+c1+d2)

15、 a1 a2 b1b2 c1 c2 d1 d2 最小方差平滑滤波器 基本原理 n将属于同一个区域的可能的相邻关系以将属于同一个区域的可能的相邻关系以9种种 模板表示出来,然后计算每个模板中的灰度模板表示出来,然后计算每个模板中的灰度 分布方差,以方差最小的那个模板的均值替分布方差,以方差最小的那个模板的均值替 代原像素值。代原像素值。 最小方差平滑滤波器 模板结构 n模板如下:本例在第模板如下:本例在第2和第和第6中选择一个方差小的。中选择一个方差小的。 3 12 4 5 6 7 8 9 Sigma平滑滤波器 基本原理 n根据统计数学的原理,属于同一类别的元素 的置信区间,落在均值附近2 范围

16、之内。 nSigma滤波器是构造一个模板,计算模板的 标准差,置信区间为当前像素值的2范围。 n将模板中落在置信范围内的像素的均值替换 原来的像素值。 Sigma平滑滤波器 例题 n如下,是一个如下,是一个5 5* *5 5的模板。的模板。 =1.56 置信区间为:置信区间为: f(i,j)-2, f(i,j)+2=5-3.12,5+3.12=1.88,8.12 g(i,j) =4.33 4 边界保持类平滑滤波器 总结 n边界保持类平滑滤波器的核心是:尽可能地边界保持类平滑滤波器的核心是:尽可能地 将平滑处理避开两个或多个不同区域进行计将平滑处理避开两个或多个不同区域进行计 算。可以采用不同形

17、状结构判别,也可以采算。可以采用不同形状结构判别,也可以采 用同类相似的概念进行判别。用同类相似的概念进行判别。 图像的噪声示例 椒盐噪声示例 高斯噪声示例 均值滤波器滤椒盐噪声的效果 均值滤波器滤高斯噪声的效果 加权均值滤波器的效果(H1) H0的比较例的比较例H1的效果的效果 加权均值滤波器的效果(H2) H0的比较例的比较例H2的效果的效果 加权均值滤波器的效果(H3) H0的比较例的比较例H3的效果的效果 加权均值滤波器的效果(H4) H0的比较例的比较例H4的效果的效果 中值滤波器的效果(椒盐噪声) 中值滤波器的效果(高斯噪声) 中值滤波与均值滤波效果比较 (椒盐噪声) 中值滤波中值

18、滤波均值滤波均值滤波 中值滤波与均值滤波效果比较 (高斯噪声) 中值滤波中值滤波均值滤波均值滤波 KNN均值滤波器的效果(椒盐噪声) 均值滤波中值滤波中值滤波 KNN均值滤波 KNN均值滤波器的效果(高斯噪声) 均值滤波均值滤波 中值滤波中值滤波 KNNKNN均值滤波均值滤波 画面边框保留效果 n所谓的信号噪声,是信号在摄取时或是所谓的信号噪声,是信号在摄取时或是 传输时所受到的传输时所受到的随机干扰信号随机干扰信号。 n常见的有常见的有椒盐噪声椒盐噪声和和高斯噪声高斯噪声。 信号噪声的概念 中值滤波器 处理示例 例:模板是一个1*5大小的一维模板。 原图像为:2 2 6 2 1 2 4 4 4 2 4 处理后为: 2 2 (1,2,2,2,6) 2 (1,2,2,2,6) 2 (1,2,2,4,6) 2 2 4 4 4 4 4 (2,4,4) K近邻(KNN)平滑滤波器 原理分析 n边界保持滤波器的核心是确定边界点与非边界边界保持滤波器的核心是确定边界点与非边界 点。点。 n如图所示,点如图所示,点1 1是黄色区域的非边界点,点是黄色区域的非边界点,点2 2是是 蓝色区域的边界点。蓝色区域的边界点。 n点点1 1模板中的像素全部模板中的像素全部 是同一区域的;是同一区域的; 点点2 2模板中的像素则包模板中的像素则包 括了两个区域。括了两个区域。 1 2 K近邻(KN

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论