




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、28.2 与圆有关的位置关系28.2.4圆和圆的位置关系教学目标(一)教学知识点 1了解圆与圆之间的几种位置关系2了解两圆外切、内切与两圆圆心距d、半径R和r的数量关系的联系.(二)能力训练要求1经历探索两个圆之间位置关系的过程,训练学生的探索能力.2. 通过平移实验直观地探索圆和圆的位置关系,发展学生的识图能力和动手操作能力.(三)情感与价值观要求1通过探索圆和圆的位置关系,体验数学活动充满着探索与创造,感受数学的严谨性 以及数学结论的确定性.2经历探究图形的位置关系,丰富对现实空间及图形的认识,发展形象思维.教学重点探索圆与圆之间的几种位置关系,了解两圆外切、内切与两圆圆心距d、半径R和r
2、的数量关系的联系.教学难点探索两个圆之间的位置关系,以及外切、内切时两圆圆心距 d、半径R和r的数量关系的过程.教学方法教师讲解与学生合作交流探索法教学过程I. 创设问题情境,弓I入新课 师我们已经研究过点和圆的位置关系,分别为点在圆内、点在圆上、点在圆外三种;还探究了直线和圆的位置关系,分别为相离、相切、相交它们的位置关系都有三种今天 我们要学习的内容是圆和圆的位置关系, 那么结果是不是也是三种呢?没有调查就没有发言 权.下面我们就来进行有关探讨.n.新课讲解师大家思考一下,在现实生活中你见过两个圆的哪些位置关系呢?生如自行车的两个车轮间的位置关系;车轮轮胎的两个边界圆间的位置关系;用一只F
3、面我们就来讨论这些位置手拿住大小两个圆环时两个圆环间的位置关系等.师很好,现实生活中我们见过的有关两个圆的位置很多.关系分别是什么.二、探索圆和圆的位置关系在一张透明纸上作一个O 0再在另一张透明纸上作一个与OOi半径不等的O把两张透明纸叠在一起,固定O Oi,平移O 02,0 Oi与O 02有几种位置关系?师请大家先自己动手操作,总结出不同的位置关系,然后互相交流.生我总结出共有五种位置关系,如下图:相交内切内含师大家的归纳、总结能力很强,能说出五种位置关系中各自有什么特点吗?从公共点 的个数和一个圆上的点在另一个圆的内部还是外部来考虑.生如图:(1)外离:两个圆没有公共点,并且每一个圆上的
4、点都在另一个圆的外部;外切:两个圆有唯一公共点,除公共点外一个圆上的点都在另一个圆的外部;相交:两个圆有两个公共点,一个圆上的点有的在另一个圆的外部,有的在另一个 圆的内部;内切:两个圆有一个公共点,除公共点外,O02上的点在O Oi的内部;(5)内含:两个圆没有公共点,O O2上的点都在O Oi的内部.师总结得很出色,如果只从公共点的个数来考虑,上面的五种位置关系中有相同类型吗?生外离和内含都没有公共点;外切和内切都有一个公共点;相交有两个公共点.师因此只从公共点的个数来考虑,可分为相离、相切、相交三种.经过大家的讨论我们可知:投影片(1) 如果从公共点的个数,和一个圆上的点在另一个圆的外部
5、还是内部来考虑,两个圆 的位置关系有五种:外离、外切、相交、内切、内含.外离(2) 如果只从公共点的个数来考虑分三种:相离、相切、相交,并且相离亠人,相切内含外切内切.三、例题讲解投影片两个同样大小的肥皂泡黏在一起,其剖面如图所示(点0, 0/是圆心),分隔两个肥皂泡的肥皂膜PQ成一条直线,TP、NP分别为两圆的切线,求/ TPN的大小.分析:因为两个圆大小相同,所以半径 0P= 0/ P = 00/,又TP、NP分别为两圆的 切线,所以 PT丄0P, PN丄0/ P,即/ 0PT =Z 0/ PN= 90,所以/ TPN等于360减 去/ 0PT +Z 0/ PN + Z 0P0/ 即可.解
6、:/ 0P = 00/ = P0 / , P0 / 0是一个等边三角形./ 0P0/ = 60.又 TP与NP分别为两圆的切线,/ TP0 =Z NP0/ = 90./ TPN = 360- 2X 90 60= 120 .四、想一想如图,O 0i与O 02外切,这个图是轴对称图形吗?如果是,它的对称轴是什么?切师我们知道圆是轴对称图形,对称轴是任一直径所在的直线,两个圆是否也组成一个轴对称图形呢?这就要看切点T是否在连接两个圆心的直线上,下面我们用反证法来证明.反证法的步骤有三步:第一步是假设结论不成立;第二步是根据假设推出和已知条件或 定理相矛盾的结论;第三步是证明假设错误,则原来的结论成立
7、.证明:假设切点T不在OjO2上.因为圆是轴对称图形,所以 T关于O1O2的对称点也是两圆的公共点,这与已知条 件O Oi和O O2相切矛盾,因此假设不成立.则 T 在 O1O2上.由此可知图(1)是轴对称图形,对称轴是两圆的连心线,切点与对称轴的位置关系是切点在对称轴上.在图中应有同样的结论.通过上面的讨论,我们可以得出结论:两圆相内切或外切时,两圆的连心线一定经过 切点,图 和图都是轴对称图形,对称轴是它们的连心线.五、议一议投影片( 3. 6C)设两圆的半径分别为 R和r.(1)当两圆外切时,两圆圆心之间的距离(简称圆心距)d与R和r具有怎样的关系?反之 当d与R和r满足这一关系时,这两
8、个圆一定外切吗?(2)当两圆内切时(R r),圆心距d与R和r具有怎样的关系?反之,当 d与R和r满 足这一关系时,这两个圆一定内切吗?师如图,请大家互相交流.生在图中,两圆相外切,切点是A.因为切点 A在连心线O1O2上,所以0Q2 =O1A + O2A= R+ r,即d= R+ r;反之,当d= R+ r时,说明圆心距等于两圆半径之和,Oi、A、O2在一条直线上,所以。 Oi与O。2只有一个交点A,即O Oi与O。2外切.在图中,O Oi与O O2相内切,切点是 B .因为切点B在连心线 O1O2上,所以O1O2 =O1B O2B, 即卩d = R r;反之,当d = Rr时,圆心距等于两
9、半径之差,即。1。2=O2B,说明O1、O2、B在一条直线上,B既在O O1上,又在O O2上,所以O O1与O。2内 切.师由此可知,当两圆相外切时,有d = R+ r,反过来,当d = R+ r时,两圆相外切,即两圆相外切:二d = R+ r.当两圆相内切时,有d = R r,反过来,当d= R r时,两圆相内切,即两圆相内切二d =R r.川.课堂练习随堂练习W.课时小结本节课学习了如下内容:1探索圆和圆的五种位置关系;2. 讨论在两圆外切或内切情况下,图形的轴对称性及对称轴,以及切点和对称轴的位3. 探讨在两圆外切或内切时,圆心距d与R和r之间的关系.V. 课后作业习题3. 9W.活动与探究已知图中各圆两两相切,O O的半径为2R,O O1O O2的半径为R,求O O3的半径.分析:根据两圆相外切连心线的长为两半径之和,如果设OO3的半径为r,则03 =O2O3= R+ r,连接OO3就有OO3丄O1O2,所以OO2O3构成了直角三角形,利用勾股定理可 求得O O3的半径r.解:连
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 临床路径管理与护理实践
- 智能家居解决方案采购补充协议
- 留学国家政策动态监测与预警合同
- 2025设备维修保养服务合同范本
- 利华益往年考试题及答案
- 司法考试题及答案
- 美食成分测试题及答案
- 党史的笔试题目及答案
- 河源体育考编试题及答案
- 珠海客服面试题库及答案
- 广州市人力资源和社会保障局事业单位招聘工作人员【共500题附答案解析】模拟检测试卷
- 产品定价和定价策略课程课件
- 镁的理化性质及危险特性表MSDS
- JC-MM-会计核算手册模板(生产制造业)V1
- 顶管工程施工组织设计方案
- 常用数学物理英语词汇
- 2021年浙江省杭州市西湖区杭州绿城育华小学一级下册期末数学试卷
- 国家储备林改培外业调查技术
- 季节热能储存技术现状
- T∕CNEA 001.1-2021 核能行业供应商评价与管理规范 第1部分:合格供应商要求及判定规则
- 贝朗CRRT操作常见报警及处理
评论
0/150
提交评论