初中数学思维导图0001_第1页
初中数学思维导图0001_第2页
初中数学思维导图0001_第3页
初中数学思维导图0001_第4页
初中数学思维导图0001_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、思维导图同是半面t到定AffjO等于定长的点的集合。 圆将平面分成圆内、圆上、圆外三部分 ,圆的艇彳稚冋-直統上的三点馆定-个圆.r(W圆了到定点的距离零于定长的点的轨辺是以定点为逊心,定长为Y径的圆。基本轨迹,.找駁的/利己知线段囲个竭点的厕离相等时点的轨迹是这条线段的屮垂线& 中垂线 角的平分线了到C知角的两边的距离相等的点的轨迹是这个角的平分线。圆是轴对称图形,经过凰心的每一条直线都是它的对称轴。”垂直于弦的直径平分张,并且平分皱所对的两条弧。別对称性冒垂径定理推论-平分弦館宜于咳过圆心1鉀分孤柱趕麴鬻辭并出弦盹咧。I补充f圆的两条平行孩所夹的孤相等。凰是以圆心为对称中心的中心对称图形左

2、同圆或等岡屮,如果两个圆心角.為蕖贰前冢弦或两冬弦的弦心匝屮有一组量相等,那么它们所对应的其余各组量祁分别相等&屈心角定理了圆心角的攬数和它所对的数相等。一杂30?对的圆周角等于它所对的圆心角的一半。对的弧相等。臓一器縊霭懾勰I勰是晞圆的内接了圆的内接四边形对角互补并H任何一个外角都等于它的内对角。四边形1硼的匕关系相交m公共点个敷210思心到I线距离d和 半加的关系dx公井点隸交点I啊无直线和恻的位置关系一连辛径证垂瓦作垂HtE半径切线的(判定方法n KiF代义直线和圆有唯-公共点晒这条直线是圆的切线。 定理:到圆心的距离等于半径的宜线是园的切线。 I判定:经过半径外端卫瓏直于这条Y径的直线

3、是IS的切线。该定理可简述为;1经过圆心.2唾直于切统3盘过切点卫知真二可推岀第二个.旋理:酗切縫直于经过切点的半律推论1:经ii切点且垂直于切线的宜线必经过倒心。推论2;经边i心R垂直于切线的直线必经过切点。直线和圆的1切线的赢-.-11位置关系V丿切线长定理瞌器飜勰上这的帥険胀總黑这囂魁翳躡棗驢 勰黔 踽与三刎切国倆豔錨翟瀏般勰跚有关的柢念叫做圆的外切三轴形。三角形内心的性质餾册紬E二角形的内切圆I二角形内切圆半從公式iSAABC的三溯肋a. L c,而积为S,刃内切風半径芦一-,a + b+c设RiAABC的三边分别为a、b、c(其中c为斜边), 勉内砸半径G空工。“相离”包护外离”和呐

4、含” “相切”包括“内切”和“外切”SL.0/ 内含科交 、冬严”外离 巒 厂尔水4同心例内切外切/两圆相切的如果两个圜相切,那么切点一定在连心线上.飞性质是兔 L两圆村交的厂相交两恻的连心线垂直平分公共弦。飞性质臣包外公切线两个圆在公切线的同旁蠶熬響系两弧 axi醱内公6 A并J8224外切21i相交202内切101内含000h、圆和圆的 位置关系内公切线两个圆在公切线的两旁如果两圆有两冬内外)公切线.那么这两条公切线长相等. 公切线长 /如果聘条内(外)公切线相交.那么空点在两圆连心线h.尸定理并且连心线平分两条内外)公切线的夹角。V两圆的公切线卜一、外總线长d = JOQ;_(R_k.Z

5、APC R-r sin=2 0Q.ZAPC RrJ sin=2 qq展文1各边相等、各角也相等的多边形正多边形的中心正多边形的外接谕(或内切圆)的圆心任何正多边形都有一个外接圆 和一个内切圆,它们是同心圆。卜厂正多边形外接圆的半径Y连结中心和顶点的线段卜/正多边形内切圆的半径中心到边的距离-(正n边形的每个中心介为360小度J正多边形每一边所对的外接圆的圆心角正n边形的 内、外角每个内角为呼或他黔360正多边形和圆、毎个外九为一fmil正多边形都是轴对称图形,正n边形有n条对称轴戸正即为偶数)边形是中心对称图形/*鬪周长公式:C=2Kr圆面积公式:Ssjir2与圆冇关的计算一扇形面积公式:S=

6、益或惻柱侧血积公式;S=2mh、j圆扶表面积公式:S=2xrh+2rcr2圆柱体积公式:V=Kf2h 倒锥体积公式:V=-xr2h知识梳理一一数与式糕数和分数统称为育理数正有理数有理数-?d定义与分类卜I负有理数无限不循环小数叫做无理数TX 了正无理数无理数负无理数疋规定了原点、正方向和单位长度的宜线叫做数轴。世处沁H实数与数轴上的点一一对应。r数轴上表示数a的点与原点的距离,就是数a的绝对值。逐麵H冶0,汁0-a, a 1(/(1 l=- CCD$X=- crt = 7cz bA锐角三角比特殊锐角三角比1sinacosacfga30。4560。|在直角二用形屮,己知其屮的两牛元素至少有亍是边

7、),就可以解这个克用二角形.启知两条直角边 已知斜边和一个锐角I己知一条直外边和一个税角d四种茶本类型(一解言角三角形卜伍幵手有斜用弦,无弦用切.中乘勿除,取原避中。 t亠H若遇斜三角形,可“化斜为虫”。在视线与水平线所成的狎中, 杠线“蘇籍醫臨勰牌触坡面的铅垂iS度hfll水平宽度L的比 /叫做坡面的坡度(坡比)记作i=n/L=tga (a为坡角北偏东(90-a)度 北備郦度 * I南仙东V度0slnA1,0cosA0,ctgA0 (英中 ZA为鋭角)sinA=co3(90-A)j tgA=ctg(90-A)&m2/l + GO&2/l = lIgA ctgA = 1.sin A . cos

8、 Ai 心=,cigA =cos Asin A知识梳理一一函数平面直角朋标系内的点与伞体有序实数对一一对应。第二限 一.+) 2篇一直限 (+ , +坐标原点和x轴、y轴上的点J不属于任何象限。帆X轴上的点记作(X, 0)ly轴上的点记作(Ch y)平血直角坐标系应q/点P( a, b)关干谕轴对称点的坐标1 原点虫(石R(心宀)-4(,0), (x2f0)9 肋=|可乃|两点之间 砂r 距离公式a ABug-对4-Oi-7i)1&0小)加仍)肋=以乃|在某一变化过程中有两个变量沢和*如果对于X:在某个允许取值范用内 申义盟菽朋占豐碱灿沖一雌的踣它对必(函数卜JO定义威q使解析式有意义 考處实

9、杯问题中的实标意义I函数的二冲表示达3解析法列表法、图像法定以3如果y=X (上是不锌于0的常数),那么y叫做x的正比例函数。-正比例函数二2图像討牒編霭盤F*0宜线Jtr经过第一、三象限比犬宜细一丘经过第;四象限性质諾5临的增大而増大vfc的増大而减小定义O-如果尸-后(4厶杲常数,BA / 0),那么卩叫做的次函数。 一次函数二图像3 次蹩疇娜像Q-A 0 0 o H线厂b.经过笫YMvOa直线y=kx七b经过第象限。Yd oo直线p= fcr + 0经过第象限*O0vOu 直线y=kxb经过第象限。I性质p i 0 =尸随x的增大而增大 負R V 0 G F随3;的增大而减小定义&如-:

10、(屣常熟 恥*0那么刚宓的反比例函数6(反比例函数打O期像丿匕谿饗图像4衣 OC双曲细二-的两个分支分别在在每个象限内,随X的 z在第一、二象限内增大而减小kQ双曲絢心*的两个分支分别业仗毎个線限内y乐的 x在第二、四篆限内增.大而培大 My-ax bx c(a b c是常数,0), 赵1那么刑愀的一次西数e一般丸y顶点式;丿ax + 加+ c (a/O) a(x+ m)1 (a X 0) (x-xjfx-xj (fl/O)若C知图像上无特点的三个点或三对x、y的值,/通絃选一般乙 攥餐甌卜已知图像的顶点或对称轴,川常选顶点式。己知图像与X轴的交点坐标,丁通常选交点式,严方向豐上I a 0抛物

11、线与x轴的交点情况抛物线与;渤有一个交点A=0抛物线轨轴段有交点e A 0抛物纫二一2(x + l)、4r聚焦顶点5下平移4个单忆用物纟妇知4) 上加下赢左加右减再向左平移3个单位。“0a拥有平行四边形的性质。 僵画9菱形的四条边都相等。I菱形的对角线互相垂直平分,FL每一条对角线平分定义四条边都相等的四边形是矩形。I对角线互柑垂直的平行四边形是矩形。组对角。是轴对称图形,有2条对称轴 对鄭性冏 足中心对称图形了岛钿4苗Z菱形面积=底)髙 也色輕冋菱形面积=对角线乘积的一半底刃3有一组邻边相等并R有一个角是直角的平行四边形叫做正方形。脛画3拥有平行四边形.矩形.菱形的性质。(定义正方形怜有一个角是直角的菱形是正方形。 I有一组邻边相等的矩形是止方形。是轴对称图形,有4条对称轴 是中心

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论