版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第一轮第一轮 横向基础复习横向基础复习 第三单元第三单元 三角形三角形 第第1212课课 全等三角形全等三角形 全等三角形仍是平面几何的基础,考纲要求考全等三角形仍是平面几何的基础,考纲要求考 查两个三角形全等的判定查两个三角形全等的判定. . 广东省近广东省近5 5年试题规律:年试题规律: 全等三角形的判定与性质是必考内容,一般以解答题全等三角形的判定与性质是必考内容,一般以解答题 出现或渗透到作图题、图形变换综合题中,是基础内出现或渗透到作图题、图形变换综合题中,是基础内 容,亦是重点内容容,亦是重点内容. . 第第1212课课 全等三角形全等三角形 知识点知识点1 1全等三角形的性质与判
2、定全等三角形的性质与判定 定义定义 能够完全重合的两个图形叫做全等形. 全等全等 三角三角 形形 定 义 能够完全重合的两个三角形叫做全等三角形. 性 质 全等三角形的对应边相等,对应角相等. 全全 等等 三三 角角 形形 判定 (1)三边分别相等的两个三角形全等(SSS); (2)两条边和它们的夹角分别相等的两个三角 形全等(SAS); (3)两角和它们的夹边分别相等的两个三角形 全等(ASA); (4)两角和其中一个角的对边分别相等的两个 三角形全等(AAS); (5)斜边和一条直角边分别相等的两个直角三 角形全等(HL). 知识点知识点2 2 角的平分线角的平分线 性质性质 角的平分线上
3、的点到角两边的距离相等. 判定判定 到角两边距离相等的点在角的平分线上. 知识点知识点3 3 线段的垂直平分线线段的垂直平分线 性质性质 线段的垂直平分线上的点与这条线段两个端点 的距离相等. 判定判定 与一条线段两个端点距离相等的点,在这条线 段的角平分线上. 1.(全等三角形的性质)如图,OCAOBD, 1=40,C=110,则D=( ) A. 30B. 40 C. 50D. 无法确定 A 2.(三角形的全等性质)如图,ABCCDA,若AB=3, BC=4,则四边形ABCD的周长是( ) A. 14B. 11 C. 16D. 12 A 3.(三角形的全等判定)如图,已知MANC,MBND,
4、 且MB=ND,则MABNCD的理由是( ) A. SSSB. SAS C. AASD. ASA C 4.(三角形的全等判定)如图,点B、E、C、F在同一条 直线上,ABDE,AB=DE,要用SAS证明 ABCDEF,可以添加的条件是( ) A. A=DB. ACDF C. BE=CFD. AC=DF C 5.(角的平分线)如图,OC平分AOB,P在OC上, PDOA于D,PEOB于E 若PD=3cm,则PE= cm 3 考点一考点一全等三角形全等三角形 例例1 (2017广州)如图,点E,F在AB上,AD=BC, A=B,AE=BF 求证:ADFBCE 【点拨点拨】本题关键是求证AF=BE
5、解:解:AE=BF, AE+EF=BF+EF, AF=BE, ADF BCE(SAS). 考点二考点二 角的平分线角的平分线 例例2 (2017来宾)如图,在ABC中,ACB=90, ABC的平分线BD交AC于点D,已知AC=3,AD=2, 则点D到AB边的距离为 【点拨点拨】本题主要考查角平分线的性质,掌握角平分线 上的点到角两边的距离相等是解题的关键 对应训练对应训练 1.(2018梧州)如图,已知BG是ABC的平分线, DEAB于点E,DFBC于点F,DE=6,则DF的长度是 ( ) A. 2B. 3 C. 4D. 6 D 2.(2013丽水)如图,在RtABC中,A=90, ABC的平
6、分线BD交AC于点D,AD=3,BC=10,则 BDC的面积是 15 3.(2018衢州)如图,在ABC和DEF中,点B,F,C, E在同一直线上,BF=CE,ABDE,请添加一个条件, 使ABCDEF,这个添加的条件可以是 (只需写一个,不添加辅 助线) AB=DE或或A=D等等 4.(2018昆明)如图,在ABC和ADE中,AB=AD, B=D,1=2 求证:BC=DE 证明:证明:1=2, DAC+1=2+DAC, BAC=DAE, 在在ABC和和ADE中,中, ABC ADE(ASA),), BC=DE. BD ABAD BACDAE 5.(2018泰州)如图,A=D=90,AC=DB
7、,AC、 DB相交于点O求证:OB=OC. 证明:在证明:在RtABC和和RtDCB中,中, RtABC RtDCB(HL),), OBC=OCB, OB=OC ACDB BCCB 夯实基础夯实基础 1.(2016成都)如图,ABCABC,其中 A=36,C=24,则B= 120 2.(2018安顺)如图,点D,E分别在线段AB,AC上, CD与BE相交于O点,已知AB=AC,现添加以下的哪个 条件仍不能判定ABEACD( ) A. B=C B. AD=AE C. BD=CE D. BE=CD D 3.(2018中山模拟)如图,E,B,F,C四点在一条 直线上,EB=CF,A=D,再添一个条件
8、仍不能证 明ABCDEF的是( ) A. AB=DEB. DFAC C. E=ABCD. ABDE A 4.(2018惠州期末)如图,若要用“HL”证明 RtABCRtABD,则需要添加的一个条件是 AC=AD或或BC=BD 5.(2018云南)如图,已知AC平分BAD,AB=AD. 求证:ABCADC. 证明:证明:AC平分平分BAD,BAC=DAC, 在在ABC和和ADC中,中, ABC ADC(SAS) ABAD BACDAC ACAC 6.(2018苏州)如图,点A,F,C,D在一条直线上, ABDE,AB=DE,AF=DC. 求证:BCEF 证明:证明:ABDE,A=D,AF=DC,
9、 AF+FC=DC+FC, 即即AC=DF 在在ABC与与DEF中,中, ABC DEF(SAS),), ACB=DFE,BCEF ABDE AB ACDF 能力提升能力提升 7.(2018中山期末)如图所示,在ABC中, B=C=50,BD=CF,BE=CD,则EDF的度数是 50 8.(2018湛江期末)如图为6个边长相等的正方形的 组合图形,则1+2+3= 135 9.(2016西宁)如图,OP平分AOB,AOP=15, PCOA,PDOA于点D,PC=4,则PD= 2 10.(2018东莞期末)已知:如图1所示,等腰直角三角 形ABC中,BAC=90,AB=AC,直线MN经过点A, BDMN于点D,CEMN于点E (1)试判断线段DE、BD、CE之间的数量关系,并说明理 由; 解:解:DE=BD+CE,理由如下:,理由如下: BDMN,CEMN, BDA=AEC=90, BAD+ABD=90, 又又BAC=90,BAD+CAE=90, ABD=CAE, 在在BAD和和ACE中,中, BAD ACE(AAS),),BD=AE,AD=CE, 又又DE=AE+AD,DE=BD+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 自然保护区电子教案
- 博物馆展品管理与文化传承方案
- 初三语文学习计划11篇
- 互联网医院AI糖尿病管理平台的运营实践
- 乙肝肝硬化的个体化抗病毒治疗决策
- 马来西亚项目市场分析报告-课件
- 数学与应用数学专业毕业论文标题
- 师范大学自考汉语言文学毕业论文参考选题
- 湖南省房屋建筑和市政基础设施工程“机器管招投标”模块化招标文件示范文本(施工)(2025年11月版)
- 文献检索题目
- 2025内蒙古呼和浩特春华水务开发集团有限责任公司招聘工作人员84人笔试备考试卷带答案解析
- 健身房开业投资预算方案
- 水稻种子采购合同范本
- 泄密应急处置预案
- 体育室内课《篮球ppt课件》
- 中小学数字校园典型案例展示数字校园专为未来
- 附着式钢管抱杆铁塔组立施工方案
- 中医内科主治医师考试题库及答案解析
- DB44T 1581-2015围手术期术后胃肠动力评价规范
- 设计审美与文化智慧树知到答案章节测试2023年山东科技大学
- 【公开课】高三二轮复习微专题:血糖平衡的调节+课件
评论
0/150
提交评论