QPSK的系统仿真_第1页
QPSK的系统仿真_第2页
QPSK的系统仿真_第3页
QPSK的系统仿真_第4页
QPSK的系统仿真_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、QPSK的系统仿真 作者:白根炜 (陕西理工学院物电学院通信工程1104班,陕西汉中,) 指导老师:井敏英摘要在数字信号的调制方式中4PSK是目前最常用的一种数字信号调制方式,它具有较高的频谱利用率、较强的抗干扰性、在电路上实现也较为简单。调制技术是通信领域里非常重要的环节,一种好的调制技术不仅可以节约频谱资源而且可以提供良好的通信性能。关键词4PSK; MATLAB ;调制QPSK system simulation Author:Bai GenWei(Garde11 class4 Major communication engineering,School of Physics and T

2、elecommunication Engineering,Shaanxi University of Telechnology,shaanxi hanzhong ) Tutor:Jing MingyingAbstract4PSK modulation in the digital signal is the most common kind of digital signal modulation mode, it has high spectrum efficiency,Strong anti-interference, realized in the circuit is relative

3、ly simple. Modulation technology is a very important role in the field of communication, a kind of modulation technology can not only save the spectrum resources with good communication and can provide good performance. Keywords QPSK ,ATLAB, modulation 目录引言11.QPSK通信系统的性能指标41.1 有效性指标. 41.2可靠性指标.42. 基

4、带信号处理.43 调制/解调.53.1. QPSK调制53.2 QPSK解调原理64.QPSK通信系统的仿真图和结果分析7致谢9参考文献10引言 QPSK是英文Quadrature Phase Shift Keying的缩略语简称,意为正交相移键控,是一种数字调制方式。四相相移调制是利用载波的四种不同相位差来表征输入的数字信息,是四进制移相键控。QPSK是在M=4时的调相技术,它规定了四种载波相位,分别为45,135,225,315,调制器输入的数据是二进制数字序列,为了能和四进制的载波相位配合起来,则需要把二进制数据变换为四进制数据,这就是说需要把二进制数字序列中每两个比特分成一组,共有四种

5、组合,即00,01,10,11,其中每一组称为双比特码元。每一个双比特码元是由两位二进制信息比特组成,它们分别代表四进制四个符号中的一个符号。QPSK中每次调制可传输2个信息比特,这些信息比特是通过载波的四种相位来传递的。解调器根据星座图及接收到的载波信号的相位来判断发送端发送的信息比特。在数字信号的调制方式中QPSK四相移键控是目前最常用的一种卫星数字信号调制方式,它具有较高的频谱利用率、较强的抗干扰性、在电路上实现也较为简单。在HFC网络架构中,从用户线缆调制解调器发往上行通道的数据采用QPSK方式调制并用TDMA方式复用到上行通道。在有线电视系统卫星,大锅,输出的就是QPSK信号。在实际

6、的调谐解调电路中,采用的是非相干载波解调。本振信号与发射端的载波信号存在频率偏差和相位抖动因而解调出来的模拟I,Q基带信号是带有载波误差的信号。这样的模拟基带信号即使采用定时准确的时钟进行取样判决,得到的数字信号也不是原来发射端的调制信号,误差的积累将导致抽样判决后的误码率增大,因此数字QPSK解调电路要对载波误差进行补,减少非相干载波解调带来的影响。此外,ADC的取样时钟也不是从信号中提取的,当取样时钟与输入的数据不同步时,取样将不在最佳取样时刻进行所得到的取样值的统计信噪比就不是最高,误码率就高,因此,在电路中还需要恢复出一个与输入符号率同步的时钟,来校正固定取样带来的样点误差,并且准确的

7、位定时信息可为数字解调后的信道纠错解码提供正确的时钟。校正办法是由定时恢复和载波恢复模块通过某种算法产生定时和载波误差,插值或抽取器在定时和载波误差信号的控制下,对A/D转换后的取样值进行抽取或插值滤波,得到信号在最佳取样点的值,不同芯片采用的算法不尽相同,例如可以采用据辅助法(DA)载波相位和定时相位联合估计的最大似然法。1.QPSK通信系统的性能指标1.1 有效性指标 数字通信系统的有效性指标用用传输速率和频带利用率来表征。(1)传输速率有两种表示方法:码元传输速率RB和信息传输速率Rb。在二进制下,设信息速率为Rb(bit/s),码元速率为RBN(Baud)。(2)频带利用率:在比较不同

8、的通信系统有效性时,但看他们的传输速率是不够的,还应看在这样的传输速率下占有信道的频带宽度。频带利用率有两种不同的表示方式:码元频带利用率和信息频带利用率。码元频带利用率是指单位频带内的码元传输速率,即=RB/B(Baud/HZ)。信息频带利用率是指每秒钟在单位频带上传输的信息量,即=Rb/B bit/(s.HZ)1.2可靠性指标 数字通信系统的可靠性指标用差错率来衡量。差错率越小,可靠性越高。差错率也有两种表达方式误码率与误信率。(1)误码率:指接收到的错误码元数和总的传输码元个数之比,即在传输中出现错误码元的概率,记为Pe=(2)误信率:又叫误比特率,是指接收到的错误比特数和总的传输比特数

9、之比,即在传输中出现的错误信息量的概率,记为Pb=性能分析:信号经过调制、信道、解调过程。在接收端,将得到的数与原始信号源数据比较,得到在特定信噪比下的误码率。改变系统信噪比,从而得到系统的误码率曲线图,并给出各关健点信号图及星座图。2. 基带信号处理从消息传输的角度看,一个数字通信系统包括两个重要的变换,即消息与数字基带信号之间的变换;数字基带信号与信道信号之间的变换。通常,前一个变换由发收终端设备来完成,它把无论是离散的还是连续的消息转换成数字的基带信号,而后一变换则由调制和解调器完成。抽样判决器接收滤波器信道信道信号形成在数字通信中,有些场合可以不经过载波调制和解调过程而让基带信号直接进

10、行传输。这种不用载波调制解调装置而直接传送基带信号的系统,我们称它为基带传输系统,它的基本结构如图3所示: 基带脉冲 输出 图2.1基带传输系统上图信道信号形成器用来产生适合于信道传输的基带信号,信道可以是允许基带信号通过的媒质(例如能够通过从直流到高频的有线线路);接收滤波器用来接收信号和尽可能排除信道噪声和其他干扰;抽样判决器则是在噪声背景下用来判定与再生基带信号。与此对应,我们把包括了载波调制和解调过程的传输系统称为频带传输系统,如图所示: 信道解调器调制器 基带脉冲 输入 图2.2频带传输系统的基本结构虽然在实际使用的数字通信系统中基带传输不如频带传输那样广泛,但是,对于基带传输系统的

11、研究仍然是十分有意义的。第一,即使在频带传输制里也同样存在基带传输问题,也就是说,基带传输系统的许多问题也是频带传输系统必须考虑的问题;第二,随着数字通信技术的发展,基带传输这种方式也有迅速发展的趋势,目前,它不仅用于低速数据传输,而且还用于高速数据传输;第三,理论上也可以证明,任何一个采用线形调制的频带传输系统,总是可以由一个等效的基带传输系统所替代。3 调制/解调3.1. QPSK调制QPSK的调制有两种产生方法相乘电路法和选择法 相乘法:输入信号是二进制不归零的双极性码元,它通过“串并变换”电路变成了两路码元。变成并行码元后,每个码元的持续时间是输入码元的两倍。用两路正交载波去调制并行码

12、元。其原理框图如图所示: 图3.1相乘法QPSK的调制中,QPSK信号可以看成是两个载波正交的2PSK信号调制器构成。原理分析如下:基本原理和系统结构QPSK与二进制PSK一样,传输信号包含的信息都存在于相位中。个别的载波相位取四个等间隔值之一,如/4、3/4、5/4、7/4。相应的,可将发射信号定义为:公式3.1其中,i1,2,3,4;E是发射信号的每个符号的能量,T为符号的持续时间,载波频率f等于nc/T,nc为固定整数。每一个可能的相位值对应于一个特定的二位组。下面介绍QPSK信号的产生和检测。如图为典型的QPSK发射机框图。输入的二进制数据序列首先被不归零(NRZ)电平编码转换器转换为

13、极性形式,即负号1和0分别用和-表示。该二进制波形被分接器分成两个分别由输入序列的奇数位偶数位组成的彼此独立的二进制波形,这两个二进制波形分别用a1(t)和a2(t)表示。此时,在任何一信号时间间隔内a1(t),和a2(t)的幅度恰好分别等于Si1和 Si2,即由发送的二位组决定。这两个二进制波形a1(t)和a2(t)被用来调制一对正交载波:,。这样就得到一对二进制PSK信号。和的正交性使这两个信号可以被独立地检测。最后,将这两个二进制PSK信号相加,从而得期望的QPSK。输入基带信号经过串并变换后用于控制一个相位选择电路,按照当时的输入双比特ab,决定选择哪个相位的载波输出。其框图如图所示:

14、 图3.2选择法QPSK调制原理框图:图3.3调制原理框图3.2 QPSK解调原理QPSK接收机由一对共输入地相关器组成。这两个相关器分别提供本地产生地相干参考信号和。相关器接收信号x(t),相关器输出地x1和x2被用来与门限值0进行比较。如果x10,则判决同相信道地输出为符号1;如果x10 ,则判决同相信道的输出为符号0。如果正交通道也是如此判决输出。最后同相信道和正交信道输出这两个二进制数据序列被复加器合并,重新得到原始的二进制序列。在AWGN信道中,判决结果具有最小的负号差错概率。用两路具有相互正交特性的载波来解调信号,可以分离这两路正交的2PSK信号。相干解调后,并行码元经过并/串变换

15、后,最终得到串行的数据流。QPSK解调原理框图如图所示: 图3.4相干解调原理框图4.QPSK通信系统的仿真图和结果分析QPSK通信系统的总原理图:图4.1 QPSK通信系统的仿真与结果分析:(1) 无信道星座图 图4.2 无信道星座图 图4.3解调后眼图 图4.4调制后眼图如图所示,因为在理想无信道情况下,所以在调制与解调后眼图都是端正,无叠影。 QPSK系统在理想情况下,无需加信道,原始信号经过抽样量化编码后,经过信号调制模块调制过后直接进入信号解调模块,此间无噪声干扰。信号经过解码后得到原来的波形。如图所示。(2) 有信道加信噪比仿真图 图4.5加信道调制后眼图 图4.6 加信道解调后眼

16、图当噪声存在时,调制后产生的眼图为理想的,端正的眼图。信号经过信道加噪声后,噪声叠加在信号上,眼图线迹出现叠影,“眼睛”也就更小。 图4.7加信道调制星座图 图4.8加信道解调后星座图同理眼图,加信道后星座图前后比对信号经过信道加噪声后会出现星座点模糊的现象。致谢这次的课程设计是在MATLAB的SIMULINK环境下仿真实现QPSK的调试与解调,刚开始是没有完全理解QPSK的的原理,通过出现的问题,我看到了自己的不足,也学会了SIMULINK模块的运用,更重要的是了解了多进制的调制与解调原理。QPSK的调制技术已广泛应用于生活的各个方面。在单一的数字调制技术且通信技术飞速发展的今天,早已无法满足现代通信的要求,根据不同通信方式,采取不同的调制方法。 对于我本人来讲,QPSK的调制和解调原理早已经在通信原理的课程中学习过,同时也在通信原理的实验课中观察过其仿真结果。通过课程设计来巩固通信原理与数字信号的专业知识内容,同时也运用理论知识与实际电路的设计相结合了起来,通过综合分析,找出了自己学习过程中的不足,为今后的学习提供实践依据,打下了基础。但在此次实验过程中,使用了Simulink平台搭建QPSK系统,在原本理解QPSK基本原理的基础上,同时也了解了许多其他新的东西。当然

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论