




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、机械设计作业集(第三版)解题指南西北工业大学机电学院2008.7前言本书是高等教育出版社出版、西北工业大学濮良贵、纪名刚主编机械设计(第八版)和李育锡主编机械设计作业集(第三版)的配套教学参考书,其编写目的是为了帮助青年教师使用好上述两本教材,并为教师批改作业提供方便。本书对机械设计作业集(第三版)中的大部分作业题给出了参考解答。对于设计计算类题,由于选材、取值等的不同,会得出不同的解答,这类题的设计计算方法可参考机械设计教材中的例题,本书略去解答。本书是机械设计课程教师的教学参考书,也可供自学机械设计课程的读者和考研学生参考。机械设计作业集已经使用多年,希望广大教师将使用中发现的问题和错误、
2、希望增加或删去的作业题、以及对机械设计作业集的改进建议告知编者(电子信箱:),我们会认真参考,努力改进。本书由李育锡编写,由于编者水平所限,误漏之处在所难免,敬请广大使用者批评指正。编者2008.7目录第三章机械零件的强度(1)第四章摩擦、磨损及润滑概述(5)第五章螺纹连接和螺旋传动(6)第六章键、花键、无键连接和销连接(9)第七章铆接、焊接、胶接和过盈连接(11)第八章带传动(15)第九章链传动(18)第十章齿轮传动(19)第十一章蜗杆传动(24)第十二章滑动轴承(28)第十三章滚动轴承(30)第十四章联轴器和离合器(34)第十五章轴(36)第十六章弹簧(41)
3、机械设计自测试题(43)第三章 机械零件的强度31 表面化学热处理;高频表面淬火 ;表面硬化加工 ;32 (3) ;33 截面形状突变;增大 ; 34 (1) ;(1) ; 35 (1) ;36 答:零件上的应力接近屈服极限,疲劳破坏发生在应力循环次数在 103104 范围内,零件破坏断口处有塑性变形的特征,这种疲劳破坏称为低周疲劳破坏,例如飞机起落架、火箭发射架中的零件。零件上的应力远低于屈服极限,疲劳破坏发生在应力循环次数大于 104 时,零件破坏断口处无塑性变形的特征,这种疲劳破坏称为高周疲劳破坏,例如一般机械上的齿轮、轴承、螺栓等通用零件。37 答:材料的持久疲劳极限 r 所对应的循环
4、次数为 ND ,不同的材料有不同的 ND 值,有时 ND 很大。为了便于材料的疲劳试验,人为地规定一个循环次数 N0 ,称为循环基数,所对应的极限应力 r 称为材料的疲劳极限。 r 和 N D 为材料所固有的性质,通常是不知道的,在设计计算时,当 N N 0 时,则取 rN = r 。38 答:图 a 中 A 点为静应力,r = 1 。图 b 中 A 点为对称循环变应力,r = 1。图 c 中 A 点为不对称循环变应力, 1 r 103 时,在一定的应力变化规律下,如果极限应力点落在极限应力线图中的屈服曲线GC 上时,也应按静强度条件计算;如果极限应力点落在极限应力线图中的疲劳曲线 AG 上时
5、,则应按疲劳强度条件计算;312 答:在单向稳定变应力下工作的零件,应当在零件的极限应力线图中,根据零件的应力变化规律,由计算的方法或由作图的方法确定其极限应力。1313 答:该假说认为零件在每次循环变应力作用下,造成的损伤程度是可以累加的。应力循环次数增加,损伤程度也增加,两者满足线性关系。当损伤达到 100时,零件发生疲劳破坏。疲劳损伤线性累积假说的数学表达式为ni/Ni1。314 答:首先求出在单向应力状态下的计算安全系数,即求出只承受法向应力时的计算安全系数 S和只承受切向应力时的计算安全系数 S,然后由公式(335)求出在双向应力状态下的计算安全系数 Sca,要求 ScaS(设计安全
6、系数)。315 答:影响机械零件疲劳强度的主要因素有零件的应力集中大小,零件的尺寸,零件的表面质量以及零件的强化方式。提高的措施是:1)降低零件应力集中的影响;2)提高零件的表面质量;3)对零件进行热处理和强化处理;4)选用疲劳强度高的材料;5)尽可能地减少或消除零件表面的初始裂纹等。316 答:结构内部裂纹和缺陷的存在是导致低应力断裂的内在原因。317 答:应力强度因子K I 表征裂纹顶端附近应力场的强弱,平面应变断裂韧度 K IC 表征材料阻止裂纹失稳扩展的能力。若 K I K IC ,则裂纹不会失稳扩散;若K I K IC ,则裂纹将失稳扩展。318 解:已知 B = 750MPa ,
7、s = 550MPa , 1 = 350MPa ,由公式(3-3),各对应循环次数下的疲劳极限分别为mN 095 10 6 1 N 1= 1= 350 = 583 .8 MPa sN 15 10 4因此,取 1N1 = 550MPa = smN 09 10 6 1 N 2 = 1= 3505= 452 MPaN 25 10 5mN 095 1061 N 3= 1= 350 = 271 MPa 1N 35 10 7因此,取 1N 3 = 350MPa = 1 。319 解:1确定有效应力集中系数、尺寸系数和表面质量系数查附表 32,由D / d = 48 / 40 =1.2, r / d = 3
8、 / 40 = 0.075 ,用线性插值法计算 和 。 = 2.09 +(0.075 0.04 ) (1.62 2.09 )= 1.820.10 0.04 = 1.66+(0.075 0 .04 ) (1.33 1.66 )= 1 .470.10 0 .04查附图 31,由 B = 650MPa ,r = 3mm ,查得q = 0.84 ,q = 0.86 ,由公式(附 34),有效应力集中系数k = 1+ q ( 1) = 1 + 0.84 (1.82 1) = 1.69k = 1+ q ( 1) = 1+ 0.86 (1.47 1) = 1.40查附图 32,取 = 0.77 。查附图 3
9、3,取 = 0.86 。查附图 34,取 = = 0.86 。零件不强化处理,则 q = 1 。2计算综合影响系数2由公式(3-12)和(3-14b),综合影响系数K =(k+11)1= (1.69+11) 1= 2.36 q0.770.861K = (k+11)1= (1.40+11) 1= 1.79 q0.860.861320 解:1计算法已知 max = 190MPa , min = 110MPa , m 和 a 分别为 m = max + min = 190 +110 = 150MPa22 a = max min = 190 110 = 40MPa22由公式(3-21),计算安全系数S
10、 ca = 1 + (K ) m = 300 + (2.0 0.2) 150 = 1.5K ( m + )2.0 (150 + 40)a2图解法由公式(3-6)知,脉动循环的疲劳极限 0 为 0=2 1=2 300= 500MPa1+ 1+ 0.2 1=300= 150MPa; 0=500= 125 MPa2 K 2 2 .0K2.0根据点 A (0,150)、点D (250,125)和点C (360,0)绘出零件的极限应力线图。过工作应力点M (150,40),作垂线交 AG 线于 M 点,则计算安全系数150+135Sca =M m+ M a= 1.5M m+ M a150 + 40题解
11、320 图321 解:1求计算安全系数Sca由公式(3-31),由于 3 1 ,对材料的寿命无影响,故略去。计算应力m1Z91 ca = im =6 (104 5009 ni+105 4009 ) = 275.5MPaN0i=15103由公式(333),试件的计算安全系数Sca= 1=350= 1.27275.5 ca2求试件破坏前的循环次数n由公式(31 a)各疲劳极限 rN 所对应的循环次数 N 分别为N1 = N( 1)m= 5 106 (350)9= 2017680 1500N 2= N 0( 1)m= 5 106 (350)9= 1503289 2400N = N 0 (1 ) m
12、= 5 10 6 ( 350450 ) 9 = 520799由公式(328),试件破坏前的循环次数nn2104105n = (11)N = (15)520799= 460343 4.610N1N22017681503289322 解:1计算平均应力和应力幅材料的弯曲应力和扭转切应力分别为 b=M=M=300 103= 46.88MPaW0.1d 30.1 40 3 =T=T=800 103= 62 .5MPaWT0.2d 30.2 40 3弯曲应力为对称循环变应力,故 m = 0 , a = b = 46.88MPa 。扭转切应力为脉动循环变应力,故 m = a = 0.5 = 0.5 62.
13、5 = 31.25MPa 。2求计算安全系数由公式(317),零件承受单向应力时的计算安全系数S= 1=355= 3.44K a + m2.2 46.88 + 0.2 0S = 1=200= 3.37K a + m1.831.25 + 0.1 31.25由公式(335),零件承受双向应力时的计算安全系数Sca =S S=3.44 3.37= 2.41S2 + S23.442 + 3.372323 答:由式(344),可靠性系数为=rs=600 525= 1.52+240 2 + 302rs由附表 312 查得对应的可靠度 R=(1.5)=0.933194第四章 摩擦、磨损及润滑概述41(略)4
14、2 答:膜厚比是指两滑动表面间的最小公称油膜厚度与两表面轮廓的均方根偏差的比值,边界摩擦状态时1,流体摩擦状态时3,混合摩擦状态时 13。43(略)44 答:润滑剂的极性分子吸附在金属表面上形成的分子膜称为边界膜。边界膜按其形成机理的不同分为吸附膜和反应膜,吸附膜是由润滑剂的极性分子力(或分子的化学键和力)吸附于金属表面形成的膜,反应膜是由润滑剂中的元素与金属起化学反应形成的薄膜。在润滑剂中加入适量的油性添加剂或极压添加剂,都能提高边界膜强度。45 答:零件的磨损过程大致分为三个阶段,即磨合阶段、稳定磨损阶段以及剧烈磨损阶段。磨合阶段使接触轮廓峰压碎或塑性变形,形成稳定的最佳粗糙面。磨合是磨损
15、的不稳定阶段,在零件的整个工作时间内所占比率很小。稳定磨损阶段磨损缓慢,这一阶段的长短代表了零件使用寿命的长短。剧烈磨损阶段零件的运动副间隙增大,动载荷增大,噪声和振动增大,需更换零件。46 答:根据磨损机理的不同,磨损分为粘附磨损,磨粒磨损,疲劳磨损,冲蚀磨损,腐蚀磨损和微动磨损等,主要特点略。47 答:润滑油的粘度即为润滑油的流动阻力。润滑油的粘性定律:在液体中任何点处的切应力均与该处流体的速度梯度成正比(即 = uy )。在摩擦学中,把凡是服从粘性定律的流体都称为牛顿液体。48 答:粘度通常分为以下几种:动力粘度、运动粘度、条件粘度。按国际单位制,动力粘度的单位为 Pas(帕秒),运动粘
16、度的单位为 m2/s,在我国条件粘度的单位为 Et(恩氏度)。运动粘度t 与条件粘度E 的换算关系见式(45);动力粘度与运动粘度t的关系见式(44)。49 答:润滑油的主要性能指标有:粘度,润滑性,极压性,闪点,凝点,氧化稳定性。润滑脂的主要性能指标有:锥入度(稠度),滴点。410 答:在润滑油和润滑脂中加入添加剂的作用如下:1) 提高润滑油的油性、极压性和在极端工作条件下更有效工作的能力。2) 推迟润滑剂的老化变质,延长润滑剂的正常使用寿命。3) 改善润滑剂的物理性能,例如降低凝点,消除泡沫,提高粘度,改善其粘温特性等。411 答:流体动力润滑是利用摩擦面间的相对运动而自动形成承载油膜的润
17、滑。流体静力润滑是从外部将加压的油送入摩擦面间,强迫形成承载油膜的润滑。流体静力润滑的承载能力不依赖于流体粘度,故能用低粘度的润滑油,使摩擦副既有高的承载能力,又有低的摩擦力矩。流体静力润滑能在各种转速情况下建立稳定的承载油膜。412 答:5流体动力润滑通常研究的是低副接触零件之间的润滑问题。弹性流体动力润滑是研究在相互滚动(或伴有滑动的滚动)条件下,两弹性体之间的润滑问题。流体动力润滑把零件摩擦表面视为刚体,并认为润滑剂的粘度不随压力而改变。弹性流体动力润滑考虑到零件摩擦表面的弹性变形对润滑的影响,并考虑到润滑剂的粘度随压力变化对润滑的影响。第五章 螺纹连接和螺旋传动51 大径 ; 中径 ;
18、 小径 ; 52(3) ; (1) ; (1) ; (3) ;53 (2) ; 54 90;螺纹根部; 55(3) ; 56 (4) ;57 答:常用螺纹有普通螺纹、管螺纹、梯形螺纹、矩形螺纹和锯齿形螺纹等。前两种螺纹主要用于连接,后三种螺纹主要用于传动。对连接螺纹的要求是自锁性好,有足够的连接强度;对传动螺纹的要求是传动精度高,效率高,以及具有足够的强度和耐磨性。58 答:螺纹的余留长度越长,则螺栓杆的刚度Cb 越低,这对提高螺栓连接的疲劳强度有利。因此,承受变载荷和冲击载荷的螺栓连接,要求有较长的余留长度。59(略)510 答:普通螺栓连接的主要失效形式是螺栓杆螺纹部分断裂,设计准则是保证
19、螺栓的静力拉伸强度或疲劳拉伸强度。铰制孔用螺栓连接的主要失效形式是螺栓杆和孔壁被压溃或螺栓杆被剪断,设计准则是保证连接的挤压强度和螺栓的剪切强度。511 答:螺栓头、螺母和螺纹牙的结构尺寸是根据与螺杆的等强度条件及使用经验规定的,实践中很少发生失效,因此,通常不需要进行强度计算。512 答:普通紧螺栓连接所受轴向工作载荷为脉动循环时,螺栓上的总载荷为不变号的不对称循环变载荷, 0 r 1 ;所受横向工作载荷为脉动循环时,螺栓上的总载荷为静载荷,r = 1 。513 答:螺栓的性能等级为 8.8 级,与其相配的螺母的性能等级为 8 级(大直径时为 9 级),性能等级小数点前的数字代表材料抗拉强度
20、极限的 1/100(B/100),小数点后面的数字代表材料的屈服极限与抗拉强度极限之比值的 10 倍(10S/B)。514 答:在不控制预紧力的情况下,螺栓连接的安全系数与螺栓直径有关,螺栓直径越小,则安全系数取得越大。这是因为扳手的长度随螺栓直径减小而线性减短,而螺栓的承载能力随螺栓直径减小而平方性降低,因此,用扳手拧紧螺栓时,螺栓直径越细越易过拧紧,造成螺栓过载断裂。所以小直径的螺栓应取较大的安全系数。515 答:降低螺栓的刚度或增大被连接件的刚度,将会提高螺栓连接的疲劳强度,降低连接的紧密性;反之则降低螺栓连接的疲劳强度,提高连接的紧密性。516 答:6降低螺栓的刚度,提高被连接件的刚度
21、和提高预紧力,其受力变形线图参见教材图 528c。517 答:在螺纹连接中,约有 1/3 的载荷集中在第一圈上,第八圈以后的螺纹牙几乎不承受载荷。因此采用螺纹牙圈数过多的加厚螺母,并不能提高螺纹连接的强度。采用悬置螺母,环槽螺母,内斜螺母以及钢丝螺套,可以使各圈螺纹牙上的载荷分布趋于均匀。518 答:滑动螺旋的主要失效形式是螺纹磨损,滑动螺旋的基本尺寸为螺杆直径和螺母高度,通常是根据耐磨性条件确定的。519(略)520 答:1公式中螺栓数 z = 8 错误,应当取 z = 4 。2螺纹由d1 9.7mm 圆整为 d = 10mm 错误,应当根据小径d1 9.7mm ,由螺纹标准中查取螺纹大径
22、d 。521 解:6.8 级螺栓的屈服极限s=480MPa,许用应力s/s480/3160MPa。由式(528),螺栓上的预紧力F0 d12=160 10.106 2= 9872 N1.3 41.3 4由式(59),最大横向力F F0 fzi=9872 0.2 2 1= 3291 N1.2K s522(略)523 解:1计算单个螺栓的工作剪力F =2T=2 630103= 2423NzD41302确定许用应力联轴器的材料为铸铁 HT200, B = 200MPa ,设联轴器工作时受变载荷,查表 5-10,取S p = 3 。螺栓的性能等级为 8.8 级, s = 640MPa ,查表 5-10
23、,取S = 5 ,许用应力 p = B=200= 66.7MPa ; = s=640= 128MPaS p3S53验算连接强度查手册,铰制孔用螺栓 GB/T 27-88 M1260,光杆部分的直径d0 = 13mm ,光杆部分的长度为 60 2238mm,因此连接处的最小挤压高度 Lmin = 18mm ,由公式(5-35),接合面的挤压应力 p =F=2423=10.35MPa p d0 Lmin1318由公式(5-36),螺栓杆的剪切应力 =4F=4 2423= 18.25MPa 0 。4) 应验算底板在横向力作用下是否会滑移,要求摩擦力 Ff F2 。8题解 526 图527 答:a)
24、参见教材图 5-3b; b)参见教材图 5-3a ; c)参见教材图 5-2b,螺栓应当反装,可以增大Lmin ;d)参见教材图 5-4;e) 参见教材图 5-6;f)参见教材图 5-3b,螺钉上方空间应增大,以便装拆螺钉。改正图从略。第六章 键、花键、无键连接和销连接61 (4) ;62 接合面的挤压破坏;接合面的过度磨损 ;63 (4);64 小径 ;齿形 ;65 (4) ;66 答:薄型平键的高度约为普通平键的 6070,传递转矩的能力比普通平键低,常用于薄壁结构,空心轴以及一些径向尺寸受限制的场合。67 答:半圆键的主要优点是加工工艺性好,装配方便,尤其适用于锥形轴端与轮毂的链接。主要
25、缺点是轴上键槽较深,对轴的强度削弱较大。一般用于轻载静连接中。68 答:两平键相隔 180布置,对轴的削弱均匀,并且两键的挤压力对轴平衡,对轴不产生附加弯矩,受力状态好。两楔键相隔90D 120D 布置。若夹角过小,则对轴的局部削弱过大;若夹角过大,则两个楔键的总承载能力下降。当夹角为 180时,两个楔键的承载能力大体上只相当于一个楔键的承载能力。因此,两个楔键间的夹角既不能过大,也不能过小。半圆键在轴上的键槽较深,对轴的削弱较大,不宜将两个半圆键布置在轴的同一横截面上。故可将两个半圆键布置在轴的同一母线上。通常半圆键只用于传递载荷不大的场合,一般不采用两个半圆键。69 答:轴上的键槽是在铣床
26、上用端铣刀或盘铣刀加工的。轮毂上的键槽是在插床上用插刀加工的,也可以由拉刀加工,也可以在线切割机上用电火花方法加工。610 答:因为动连接的失效形式为过度磨损,而磨损的速度快慢主要与压力有关。压力的大小首先应满足静强度条件,即小于许用挤压应力,然后,为了使动连接具有一定的使用寿命,特意将许用压力值定得较低。如果动连接的相对滑动表面经过淬火处理,其耐磨性得到很大的提高,可相应地提高其许用压力值。611 答:静连接花键的主要失效形式是工作面被压溃,动连接花键的主要失效形式是工作面过度磨损,静连接按式(65)计算,动连接按式(66)计算。9612 答:胀套串联使用时,由于各胀套的胀紧程度有所不同,因
27、此,承受载荷时各个胀套的承载量是有区别的。所以,计算时引入额定载荷系数m 来考虑这一因素的影响。613 答:销的类型和应用场合略,销连接的失效形式为销和孔壁的挤压破坏以及销的剪断。614 答:定位用销的尺寸按连接结构确定,不做强度计算。连接用销的尺寸根据连接的结构特点按经验或规范确定,必要时校核其剪切强度和挤压强度。安全销的直径按过载时被剪断的条件确定。615 答:1 键的工作长度l = 180 22 = 158mm 错误,应当为l = 130 22 / 2 5 = 114mm 。2 许用挤压应力 p = 110MPa 错误,应当为P = 40MPa 。616 解:1确定联轴器处键的类型和尺寸
28、选 A 型平键,根据轴径d = 70mm ,查表 6-1 得键的截面尺寸为:b = 20mm ,h = 12mm ,取键长L = 110mm ,键的标记为:键 20110 GB/T 1096-2003。2校核连接强度联轴器的材料为铸铁,查表 6-2,取 p = 55MPa ,k = 0.5h = 0.512 = 6mm ,l = L b =110 20 = 90mm ,由公式(6-1),挤压应力 p =2000T=20001000= 52.9MPa p kld6 90 70满足强度条件。3确定齿轮处键的类型和尺寸。选 A 型平键,根据轴径d = 90mm ,查表 6-1 得键的截面尺寸为:b
29、= 25mm ,h = 14mm ,取键长L = 80mm ,键的标记为:键 2580 GB/T 1096-2003。4校核连接强度齿轮和轴的材料均为钢,查表 6-2,取 p = 110MPa ,k = 0.5h = 0.514 = 7mm ,l = L b= 80 25 = 55mm,由公式(6-1),挤压应力 p=2000T=2000 1000= 57.7MPa p kld7 5590满足强度条件。617 解:1轴所传递的转矩T = Fe dd / 2 =1500 250 / 2 = 187.5N m2确定楔键尺寸根据轴径d = 45mm ,查手册得钩头楔键的截面尺寸为:b = 14mm
30、,h = 9mm ,取键长L = 70mm ,键的标记为:键 1470 GB/T 1565-1979。3校验连接强度带轮的材料为铸铁,查表 6-2,取 p = 55MPa ,取 f = 0.15,l = L h = 70 9 = 61mm ,由公式(6-3),挤压应力 p =12000T=12000187.5= 48.3MPa p bl(b + 6 fd)1461 (14 + 6 0.1545)满足强度条件。10618 解:1计算普通平键连接传递的转矩查表 6-1,B 型平键的截面尺寸为:b = 28mm ,h = 16mm ,取键长 L = 140mm ,k = 0.5h = 0.516 =
31、 8mm ,l = L = 140mm ,由公式(6-1),平键连接所允许传递的转矩Tkldp =8140102100 = 5712N m1200020002计算花键连接传递的转矩查手册,中系列矩形花键的尺寸为:z d D B = 109210214 ,C = 0.6mm , = 0.75 ,l = 150mm ,d m =D + d=102 + 92= 97mm ,h =D d 2C =102 92 2 0.6 = 3.8mm ,由公式(6-5),花键连接所允许传2222递的转矩T2 20001zhld m p = 20001 0.7510 3.815097 100 = 20734N m61
32、9 解:根据轴径d = 100mm ,查手册得 Z2 型胀套的尺寸为:d = 100mm ,D = 145mm ,单个胀套的额定转矩 T = 9.6kN m ,额定轴向力Fa = 192kN ,Z2 型胀套的标记为:Z2-100145 GB/T 5876-86。查表 6-4,额定载荷系数m = 1.8 ,总额定转矩和总额定轴向力分别为Tn = mT = 1.8 9.6 = 17.28kN mFan = mFa = 1.8192 = 345.6kN传递的联合作用力FR=F 2+ ( 2000T )2=1002 + (200012)2 = 260kN F ad100an连接的承载能力足够。620
33、答:a) 参见教材图 6-1a; b)两楔键之间的夹角为90D 120D ; c) 参见教材图 6-5; d)轮毂无法装拆,应当改用钩头楔键,增长轴上的键槽; e)半圆键上方应有间隙; f) 参见教材图 6-18b。改正图从略。621 解:题解 621 图11第七章 铆接、焊接、胶接和过盈连接71(3) ;72 对接焊缝 ;角焊缝 ;同一平面内 ;不同平面内 ;73剪切 ; 拉伸 ;74 (4) ; 75 (3) ;76 答:按铆缝性能的不同分为强固铆缝,强密铆缝和紧密铆缝。强固铆缝用于以铆接强度为基本要求的铆缝;强密铆缝用于不但要求具有足够的强度,而且要求保证良好的紧密性的铆缝;紧密铆缝用于
34、仅以紧密性为基本要求的铆缝。77 答:铆钉连接的破坏形式为铆钉被剪断,被铆板挤压、剪切、拉伸等破坏。校核铆钉连接时,应校核被铆件的拉伸强度条件,校核被铆件孔壁的挤压强度条件,以及校核铆钉的剪切强度条件,见教材中式(71)、(72)、(73)。78 答:焊缝的强度与被焊件本身的强度之比,称为焊缝强度系数。对于对接焊缝,当焊缝与被焊件边线的夹角 45D 时,焊缝的强度将不低于母板的强度。79 答:当焊接结构中有角钢等构件时,因为角钢截面的形心在角钢宽度方向上是不对称的,应该采用不对称侧面焊缝,两侧焊缝的长度按式(75)计算。710(略)711(略)712 答:过盈连接的装配方法有压入法和胀缩法,在
35、过盈量相同的情况下,采用胀缩法装配的过盈连接,可减少或避免损伤配合表面,因此紧固性好。713 答:过盈连接的承载能力是由连接的结构尺寸,过盈量、材料的强度以及摩擦系数、表面粗糙度、装配方法等共同决定的。714 答:可主要采取以下几种措施来提高连接强度:增大配合处的结构尺寸,从而可减小过盈量,降低连接件中的应力;增大包容件和被包容件的厚度,可提高连接强度;改用高强度的材料;提高配合面的摩擦系数,从而减小过盈量。715 解:1确定许用应力被铆件的材料为 Q235,查表 7-1,取 = 210MPa , p = 420MPa 。铆钉的材料为 Q215,查表7-1,取 = 180MPa 。2验算被铆件
36、的强度被铆件上的拉伸应力可由下式简化计算。其中d = 2 = 210 = 20mm 。 =F=200103= 166.7MPa (b 3d )(180 3 20) 10被铆件上的挤压应力 p =F=200103= 142.9MPa p dz2010 7满足强度条件。121验算铆钉的剪切强度 =4F=4 200103= 90.9MPa d 2 z 202 7满足强度条件。716 解:1确定许用应力被焊件的材料为 Q235,采用普通方法检查焊缝质量,查表 7-3,取 = 180MPa , = 140MPa 。2校核焊缝强度对接焊缝和搭接焊缝所能承受的载荷分别为F1 b = 17012180 = 3
37、67200NF2 0.7b1 = 0.7 8012140 = 94080N焊缝所能承受的总载荷F = F1 + F2 = 367200 + 94080 = 461280N 461kN焊缝所受到的工作载荷 F = 400kN F ,满足强度条件。717 解:1计算最小过盈量min过盈连接的配合为 H7/s6,查手册得孔公差为 2500+0.046 。轴公差为 250+00.169140 ,最小有效过盈量 min = 140 46 = 94m 。查表 7-6,表面粗糙度Ra = 0.8m 对应于 Rz = 3.2m 。由公式(7-12),采用压入法和胀缩法装配得到的最小过盈量分别为压入法:min = min 2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 网络直播平台流量分成与电商平台合作合同
- 深海地质勘探专利许可与技术升级改造协议
- 电商企业进口退税担保及税务风险管理合同
- 古钱币鉴定设备租赁与品牌授权与售后服务协议
- 大数据技术入股合作框架协议
- 大数据股权收益权转让与数据分析合作协议
- 美团外卖平台餐饮商家线上订单处理协议
- 离婚协议在线电子签署及履行监督协议
- 工业自动化生产线传感器设备采购、安装及维护服务合同
- 介入治疗和护理
- 施工项目部材料管理制度
- 薪酬福利经理年度述职报告
- 深邃的世界:西方绘画中的科学学习通超星期末考试答案章节答案2024年
- 2024年大学本科课程教育心理学教案(全册完整版)
- 配音基础知识课件
- 卡西欧手表EFA-120中文使用说明书
- -小学英语人称代词与物主代词讲解课件(共58张课件).课件
- 超市经营服务方案投标方案(技术标)
- 孟万金编制的中国大学生积极心理品质量表+评分方式
- JGT 486-2015 混凝土用复合掺合料
- 2023年版《安宁疗护实践指南(试行)》解读课件
评论
0/150
提交评论