杨宇轩——刚体转动瞬心的的求解方法及其应用的研究_第1页
杨宇轩——刚体转动瞬心的的求解方法及其应用的研究_第2页
杨宇轩——刚体转动瞬心的的求解方法及其应用的研究_第3页
杨宇轩——刚体转动瞬心的的求解方法及其应用的研究_第4页
杨宇轩——刚体转动瞬心的的求解方法及其应用的研究_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、刚体转动瞬心的的求解方法及其应用的研究杨宇轩南漳县第二中学( 湖北 襄阳 441100 )摘要 :对刚体平面运动过程的简化作了说明,给出了确定速度瞬心及加速度瞬心 位置的方法,并证明了加速度瞬心存在性和唯一性, 本文在阐述瞬心问题的同时, 通过实例介绍了刚体转动速度瞬心及加速度瞬心的在实际问题中的应用。 并通过 maple 编程对实例进行解析, 由于瞬心是刚体平面平行运动中很特殊的点 ,因此在 有些问题中应用对瞬心的动量矩定理能使问题更加简洁 ,也能增加对其他点的动 量矩定理的理解。关键字 :刚体 速度瞬心 加速度瞬心 平面运动 maple0 引言任何两个质点之间的距离不因力的作用而发生改变,

2、这种特殊的质点组叫做刚体。 做平面运动的刚体薄片的角速度不为零时, 在任一时刻, 薄片上恒有一点的速度为零, 这个 点叫转动瞬心 1。当薄片运动时,转动瞬心也会不断地改变位置,瞬心C 在平面 O-XY上所描绘的轨迹叫做空间极迹,在 A-XY平面上的轨迹叫做本体极迹。在任一瞬时,空间极迹与 本体极迹的公共切点 C,是该时刻转动瞬心。教科书周衍柏理论力学第三版第146 页,所述的转动瞬心, 也就是刚体转动的速度瞬心, 由速度瞬心类推得到, 刚体平面运动任一瞬 时,加速度为零的点称为加速度瞬心。速度瞬心与加速度瞬心不是同一点,一般不重合。瞬心的一大特点就是瞬时性。 这是因为在空间坐标系中瞬心的位置

3、(坐标) 是时刻移 动的,在固连在刚体上的坐标系中顺心的位置(坐标)也是时刻变化的。 利用瞬心求解物理基本运动物理量就显得很方便, 再利用瞬心法求解物理问题中, 找出瞬心 位置就显得尤其重要, 得到刚体瞬心的位置 ,很容易确定刚体上其它各点的速度及其角速度。除了速度瞬心 ,还有加速度瞬心 ,在我们所学的理论力学及相关的资料中都很少提及、 阐述家速度瞬心 ,一般原因大致有两点 :其一是教学大纲中对加速度瞬心的内容没有任何要求 其二是加速度瞬心一般难以确定。但在某些特殊条件下,加速度瞬心是较容易确定的 ,确定后容易求出其它点的加速度及角加速度,从而使一些问题得以简化。文中对速度瞬心和加速度瞬心进行

4、了分析 ,并用实例说明其应用。 2教科书中对瞬心的应用一般常见于在运动学中确定瞬心后求其它点的速度、角速度、 加速度或角加速度 ,在动力学中的应用很少提及。但由于瞬心是刚体平面平行运动中很特殊 的点 ,在有些问题中应用对瞬心的动量矩定理能使问题更加简洁,也能增加对其他点的动量矩定理的理解。1 刚体的转动瞬心转动瞬心的概念转动瞬心是作平面平行运动的刚休的瞬时转动中心, 其速度为零, 因此可认为刚体的平面平 行运动是一种以转动瞬轴 (通过瞬心,且垂直于刚体上任一点的运动平面的直线)为轴的瞬时定轴转动。由此可知 : 转动瞬心只对作平面平行运动的刚体而言,对曲线无意义。 转动瞬心只能反应刚体上任一点的

5、速度, 它只反应该点一点的情况, 所以它不能反应刚体上 该点运动轨迹在某处的弯曲程度。曲率中心概念曲率某处的曲率 k d 式中, ds 为曲线在该处的孤微分,为 x 轴正向与曲线切线的夹角, 的正转向为顺时针, k反应了曲线该处的弯曲程度, k 大,弯曲程度大 转动瞬心的确定 作平面运动的刚体的角速度不为零的时候,在任意的时刻上的横有一点的速度为零,叫 做转动瞬心,其相对于 o xy 的坐标可令式中的 vxvy 等于零而求的,即v AyvAxxc xoyc yo而转动瞬心相对于A XY 的坐标,则可令 vxvy 等于零则vaxycax ,如果 =0,则无转动瞬心,或者说转动瞬心在无穷远。只要转

6、动瞬心 c 为已知,就很难推出薄片此时的转动状况,如果取c为基点,则 c 在此时刻的速度为零,故此时的按照 c 转动,我们可以用几何法来求出转动瞬心的位置。过点A,B 做两条直线分别垂直俩个速度,则此时的焦点为转动瞬心。此时转动瞬心在静系中的 轨迹为空间轨迹,在动系中的轨迹为本体轨迹。3 转动瞬心联系速度瞬心平面运动刚体任一瞬时 ,速度为零的点称为速度瞬心 ,记作 C。由速度基点法 ,已知某瞬时刚 体的角速度 基点 A速度 va ,分析 c点:vc v arac由于速度瞬心的瞬时速度为零 ,因而刚体的平面运动可看成是连续绕速度瞬心的纯转动,速度瞬心与任一点速度矢量的连线必与此点的速度方向垂直,

7、 这样就可以用几何法找出刚体 平面运动的速度瞬心已知平面图形上任两点的速度方向, 则分别作其速度垂线, 相交点即速 度瞬心则将二速度矢量的箭头与箭头、箭尾与箭尾相连,交点即速度瞬心。在刚体的平面运动中 ,除了以上三种速度类型 ,中我们可以用速度瞬心的特点或速度投影法等来进行分析。(两速度矢量同向且大小相等 ,但其速度垂线不在一条线上 ,若是这样的话 ,相当于其速度瞬心在 无穷远 ,此时刚体实际做的是平动 ,并不是平面运动。 对两速度矢量同向不等大小 ,且其速度垂 线不在一直线上 ,这种情况也是不可能的。4 刚体对瞬心的转动方程正确的刚体绕瞬心的转动方程d dRi ri Fi + Pdt i i

8、 dt,而不是转动瞬心所在空间位置对时间的变化率为零设在时间 dt 内 ,刚体转过一微小角式中 p=mivi,IO为对瞬心的转动惯量 ,R 为瞬心的位矢 .同时指出了上述错误证明的根源 :“刚 体转动瞬心的速度为零 ,是指某时刻刚 体上 (或其延展 )某点运动速度为零 因此 dR/dt 一般不为零d,所有外力的元功为其中 LP 为所有外力对瞬时轴的矩 注意到 IP=I+ 2M(为瞬心 P 到质心的距离 ) W=LPd.按动能定理 ,得 dT=W即 12d(IP. 2)=LPd对于刚体平面转动问题,我们一般要对平面运动的进行简化。刚体的平面运动可以简 化为平面图形 S 在其自身平面内的运动。 平

9、面运动又能分解为平动和转动, 为了确定代表平 面运动刚体的平面图形的位置, 我们只需确定平面图形内任意一条线段的位置 平面运动方 程xA f1(t) yA f2(t)f3(t) 。刚体平面运动可以看成是平动和转动的合成运动。当选取好适当的点作为基点, 刚体平面运动即可简化为随基点的平动和绕基点的转动。 刚体定 轴转动和平面平动是刚体平面运动的特例。平面运动随基点平动的运动规律与基点的选择有关,而绕基点转动的规律与基点选取 无关, 瞬心问题的提出, 在某一瞬时必唯一存在一点速度等于零, 该点称为平面图形在该瞬 时的瞬时速度中心, 简称瞬心 瞬心位置随时间改变。 每一瞬时平面图形的运动可视为绕该

10、瞬时瞬心的转动这种瞬时绕瞬心的转动与定轴转动不同。 =0, 瞬心位于无穷远处 , 各点 速度相同 , 刚体作瞬时平动 , 瞬时平动与平动不同在理解瞬心及用瞬心法求解物理问题时应该注意:瞬心在平面图形上的位置不是固定 的,而是随时间不断变化的。在任一瞬时是唯一存在的。瞬心处的速度为零 , 加速度不一定 为零。 刚体作瞬时平动时,虽然各点的速度相同, 但各点的加速度是不一定相同的。不同于 刚体平动。2 刚体平面运动加速度瞬心的存在性及唯一性加速度瞬心的存在性证明:如图 1 刚体以角速度 、角加速度 做平面运动,若已知点 A 的加速度 aA,设刚体上的 B点是加速度瞬心, B点到 A点的距离为 ,由

11、刚体的平面运 动的加速度基点法可以得到:aBA42有向线段 AB与 A点加速度 aA 的夹角 为:通过分析: 过 A 点做方向为 A 点加速度 aA 顺着旋转 角的射线, 在射线上量取得到的点 B 就是刚体做平面运动的瞬心。加速度瞬心的唯一性证明:如图 2 刚体以角速度 、角加速度 做平面运动,设刚体上的 A 点是加 速度瞬心,设刚体上距离 A点到 B点的距离为 的 B点也是加速度瞬心,即 aB=0; 由刚体的平面运动的加速度基点法可以得到:将 带入到 中:即 =0; 这就证明了 AB 两点重合,刚体平面运动仅有一个加速度瞬心;图 1 图 2由此我们可以得知:加速度瞬心与速度瞬心一样,确定存在

12、并且唯一。3 对瞬心及在特殊条件加速度瞬心的动量矩定理的理解平面运动刚体任一瞬时 ,加速度为零的点称为加速度瞬心 ,例如均质圆盘在平 面或斜面上做纯滚动的问题 ,在这种情况下 ,对速度瞬心的动量矩定理可表述为 刚体对速度瞬心的动量矩对时间的微商等于作用在刚体上诸外力对速度瞬心的 力矩的矢量和 ,数学表达式为 :dJc/dt=M 速度瞬心与加速度瞬心一般不重合。对加速度瞬心 ,只有在几种特殊情况下才比 较好确定 ,但在这些特殊情况下确定后能使一些问题解决起来得到简化。在一些特殊情况中,例如均质圆盘在平面或斜面上做纯滚动的问题,对速度瞬心的动量矩定理可表述为 :刚体对速度瞬心的动量矩对时间的微商等

13、于作用在 刚体上诸外力对速度瞬心的力矩的矢量和 ,数学表达式为 :dJ/dt=Me,其成立条件 为刚体平面纯滚动问题。实际上 ,上述式子在只要当平面运动刚体的质心与速度 瞬心的距离保持不变得情况下都是成立的。又由角动量与转动惯量的关系,上式可进一步写成 :dJ/dt=I*a=M e (I 为刚体相对速度瞬心的转动惯量 ),运用对瞬心的 角动量定理可以简化计算, 在例题四的解析中体现出对瞬心的角动量定理将使问 题变得简洁。3 确定速度瞬心与加速度位置的方法图示法确定速度瞬心 由于速度瞬心的瞬时速度为零 ,因而刚体的平面运动可看成是连续绕速度瞬心的 纯转动 ,速度瞬心与任一点速度矢量的连线必与此点

14、的速度方向垂直。这样就可 以用几何法找出刚体平面运动的速度瞬心。如图 1图 6 用途是的方法找出瞬心位置瞬心 C*1 已知刚体转动的角速度及刚体上任一点的绝对速度。如图 1 ,瞬心 C*2 已知两点的速度,且彼此不平行。如图 2 ,瞬心 C*3 已知速度方向垂直于同一条直线的两点的速度。如图 3 ,瞬心 C*4 已知刚体做瞬时平动。如图 5 ,瞬心 C*5 已知两速度平行且方向相反。如图 4 ,瞬心 C*6 已知滚动的轮子,其与地面的接触点。如图6,瞬心 C*图示法确定加速度瞬心1,已知刚体内两点的加速度(加速度方向不平行)如图1,瞬心 C2,已知刚体转动的角加速度 大小和方向和角速度 ,及刚

15、体上任一点的加速 度大小和方向,如图 2 瞬心 C3,若已知纯滚动的圆盘的角加速度 的大小及方向,及角速度 的大小,如图 3,瞬心 C图 1 图2图34 速度瞬心法及对瞬心动量矩定理若取基角加速刚体的平面平行运动可以分解为刚体随基点的平动及刚体绕基点的转动两部分。 点为瞬心, 则刚体在该时刻的运动就变成了绕瞬心的转动。 由于刚体转动的角速度、 度等转动量与基点的选取无关,所以只要求出了瞬心的位置就可以求出刚体上任一点的速 r r r 度,解: r图研究分析 AB ,已知的方向,因此可确定出P 点为速度瞬心如图所示因为 v A l , AP l 得ABvAAP; 所以:v B BP AB 2 l

16、刚体平面平行运动中有些问题用瞬心法求解速度更为便利。如下面的例子B 以匀速例题:设椭圆规尺 AB的端点 A和 B沿直线导槽 Ox及Oy滑动如(图)所示,而度 c 运动 .求椭圆规尺上 M 点的速度。设 MA a,MB b, OBA 。已知椭圆规尺 AB 两端点的速度方向, 故过 A及 B作两直线分别与 vA 及 vB 垂直,此两直线相交于 C ,故 C 为转动瞬心。B点速度的量值为 c , 由 图3知vBca b sin( 为 AB 的角速度)c1ab sin根据转动瞬心的定义,知vMMC2222a sinb cosc a 2b2 cot 2ab理论力学教科书中有一些例子可以说明运用瞬心求解,

17、可以使得问题简化 例如求解沿直线轨道作纯滚动的车轮,其半径为 R,轮心的速度为 u,求轮上 A、 B、C、D 的速度。uRa p0b2 uv c2uvd2v 0例题 1:椭圆规尺的 A 端以 vA沿 x轴负向运动, AB=l,求 B端与 D 端的速度,以及 AB 的 角速度。 2分析:采用瞬心法,找出速度瞬心 C,由于 A端和 B端被约束在 x轴和 y 轴上,速度方向 分别沿着 x轴y轴,过 A与B两个端点,做垂线,垂线交点即为瞬心C。设 AB与X轴的夹角为,于是可以根据瞬心法得出:AB=L;CD=L2/ ; AC=AB*sin();BC=AB*cos( ); =v(A) /AC;v(B)=B

18、C* ; v(D)=CD*;只要知道了瞬心的位置及刚体其各个质点饶瞬心的转动角速度, 求解刚体上任意一点的速度 就很方便。如果我们采用惯性系中分析方法,例如:设 A 与 B 两点的坐标为 A(x,0)、B(0, y),D(x/2,y/2);(粗体为矢量 ) x=cos( )L;y=sin()L; vA=dx/dt;VB=dy/dt;VD=Vx+Vy;Vx=d(x/2)/dt;Vy=d(y/2)/dt;将两种方法作对比, 步骤上差不多, 但是后一种要用到矢量微分, 在理解层面上, 前一种更 容易理解, 计算也较方便快捷。 使用瞬心法时, 只要知道了瞬心的位置及刚体其各个质点饶 瞬心的转动角速度,

19、求解刚体上任意一点的速度,简洁明了,方便快捷。 。用 maple 软件对 该问题进行求解,程序如下:Restart:AB:=L:AC:=ABsin( ): BC:=ABcos( ):DC:=L/2: :=vA/AC:vB:=*BC:vC:=*AC:例题2;车轮沿直线滚动,已知车轮的半径为 R,中心O的速度为 v0,加速度为a0, 车轮与地面没有相对滑动,求瞬心 C的加速度。分析:车轮做平面运动, 设车轮上与地面借助的动质点为 C0,瞬心为车轮与地面 的接触点 C。采用瞬心法,利用 maple软件对该问题求解,程序如下:例题 3:均匀细杆长为 L,质量为 m,静止直立于光滑桌面上,当杆受到微小的

20、扰动而倒下时,求当杆刚好到达桌面时的角速度和地面的约束力; 分析:采用瞬心法和动能定理求解角速度, 用刚体平面运动微分方程求解地面的 约束力。用 maple 软件求解该例题问题。程序如下:Restart:CP:=L/2cos( ):JC:=1/12*mL2:vC:= *CP:T:=1/2*C2+1 /2*JC* 2:T0:=0:W:=(m*g*l)/ 2*(1- ):eq1:=T-T0=W:Solve(eq1, )0:=subs( =0,):0:=simplify( 0):例题 4:在例题 3 中,求解杆在受到微小震动刚要倒下的瞬间的角速度 解:杆刚要倒下的瞬时 ,角速度为零 ,加速度瞬心在任

21、两点加速度的垂直联线上,设一端为 A 一端为 B点,加速度方向水平向左 ,A 点加速度沿着杆 (没有速度 ,无法向加速度 ),因此 O点即为 此时的加速度瞬心。由对加速度瞬心的动量矩定理有 :1/12m*L2+m*(5 /4)L2=mg*L2sin45解得 :A=3*sqrt(2)/16*(g*L);从上可看到 ,用对加速度瞬心的动量矩定理解决此问题很简单,只需列一个方程即可。例:曲柄 OA 以匀角速度 转动。求当 =60o时,滑块 B的速度及连杆 AB角速 度。a R APab解:由图象可知:P点即为杆 AB的瞬心,ab是杆 AB的转动角速度:ab Rab 3R 3 3 b BP ab 2

22、3 R3用一般的动力学方法解答该题,通常有两种,一种是设 A点的坐标,根据杆 OA与 OB的长 度不变的关系, 得到用 A 来表示 B点的坐标, B点坐标的一阶导数就是 B点(滑块) 的速度。另一种方法是, 运用朗格朗日方程求解, 由于问题只有一个自由度, 因此一个方程就可以求解,但是这两种方法都涉及到了对时间的求导,因此运用瞬心法求解这种问题就显得简洁些。6 结论:(1)采用清晰简洁的图示法介绍了寻找速度瞬心和加速度瞬心的方法(2)简洁的证明了加速度瞬心存在的确定性及唯一性。( 3)选取了几个简单的例题,通过解析和 maple 程序阐明了采用瞬心法和对瞬 心的动量矩定理在解决有些问题的过程中

23、能得到简化(4)虽然有例题介绍了利用速度瞬心求解平面运动刚体的动力学问题可以使问 题得到简化, 但其适用的范围是相对狭窄的, 须根据质点系对动点的动量矩定理 具体分析 ;当质点系对速度瞬心的转动惯量为常数时,应用质点系对速度瞬心的 动量矩定理求解动力学问题才可能得到简化 ;一般情况下质点系的对速度瞬心的 转动惯量是随运动而变化的, 利用速度瞬心求解反而更复杂, 所以仍需根据传统 的平面运动微分方程求解动力学问题。(5)刚体的转动瞬心如果确定对于刚体的研究有着非常大的帮助,所以对于刚体转动瞬心 的学习要认真注意。【参考文献】1 周衍柏 .理论力学教程 M.北京:人民教育出版社 ,1979.2 平

24、面运动刚体瞬心的分析及应用 J*詹琼 贵州大学学报3 理论力学 M 郭印征 北京;清华大学出版社第三版 20054 理论力学 M ,谢传锋 北京 中国广播电视大学 19875 理论力学 M ,哈工大教研室 高等教育出版社6 加速度瞬心法及其应用 J,袁一武 山东建筑工程学院学报7 机械原理 M 黄易凯 北京: 高等教育出版社 19818 范钦珊 .工程力学教程 M.北京:高等教育出版社 ,1998.9 涅克拉索夫 .理论力学下册 M北京:商务印书馆 ,195410 江苏师范学院 .力学讲义下册 M. 北京:人教出版社 ,196011 方言.刚体对瞬心的转动方程 J.大学物理 ,198212 郑

25、传文.刚体的转动瞬心和转动方程 J.大学物理 ,198613 丁世英,刘长富.关于刚体平面运动对瞬心的动量矩定理 J.大学物理 ,198614 李翠萍,熊玉宝,湛利平等 .关于/刚体对瞬心的转动方程 J.大学物理 ,198615 韩慕松.刚体平面运动对瞬时速度中心的角动量定理 J.大学物理 ,198616 刘成群 .刚体相对于瞬时转轴的动量矩定理 J.大学理,198617 沈树仁.瞬心动量矩定理 J.大学物理 ,198618 黄唯承.关于瞬心速度的两种含义 J.大学物理 ,198619 罗耀煌,唐懋杰.关于瞬心的动量矩定理 J.大学物理 ,198620 关于刚体绕瞬心转动方程的来稿总结 J.大

26、学物理 ,198621 大学物理优秀论文评选揭晓 J.大学物理 ,1996Research the method of calculating the instantaneous center rigid bodyAuthor : YANG YuXuan Instructor: WANG ZhiYun(Hubei University of Science and Arts, XiangYang4 41053)Abstract:Introduces the instantaneous center of the rigid body plane motion speed and acceleration of the instant

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论