(完整word)高三一轮专题复习:天体运动知识点归类解析,推荐文档_第1页
(完整word)高三一轮专题复习:天体运动知识点归类解析,推荐文档_第2页
(完整word)高三一轮专题复习:天体运动知识点归类解析,推荐文档_第3页
(完整word)高三一轮专题复习:天体运动知识点归类解析,推荐文档_第4页
(完整word)高三一轮专题复习:天体运动知识点归类解析,推荐文档_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 天体运动知识点归类解析【问题一】行星运动简史1、两种学说(1)地心说:地球是宇宙的中心,而且是静止不动的,太阳、月亮以及其他行星都绕地球运动。支持者托勒密。(2).日心说:太阳是宇宙的中心,而且是静止不动的,地球和其他行星都绕太阳运动。(3).两种学说的局限性都把天体的运动看的很神圣,认为天体的运动必然是最完美,最和谐的圆周运动,而和丹麦天文学家第谷的观测数据不符。2、开普勒三大定律开普勒 1596 年出版宇宙的神秘一书受到第谷的赏识,应邀到布拉格附近的天文台做研究工作。1600 年,到布拉格成为第谷的助手。次年第谷去世,开普勒成为第谷事业的继承人。第谷去世后开普勒用很长时间对第谷遗留下来的

2、观测资料进行了整理与分析他在分析火星的公转时发现,无论用哥白尼还是托勒密或是第谷的计算方法得到的结果都与第谷的观测数据不吻合。他坚信观测的结果,于是他想到火星可能不是按照人们认为的匀速圆周运动他改用不同现状的几何曲线来表示火星的运动轨迹,终于发现了火星绕太阳沿椭圆轨道运行的事实。并将老师第谷的数据结果归纳出三条著名定律。第一定律:所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。第二定律:对任意一个行星来说,它与太阳的连线在相等时间内扫过的面积相等。如图某行星沿椭圆轨道运行,远日点离太阳的距离为 ,近日a点离太阳的距离为 ,过远日点时行星的速率为 v ,过近日点时ba的速率为vb由开

3、普勒第二定律,太阳和行星的连线在相等的时间内扫过相等的面积,取足够短的时dt间,则有:11av dt = bv dt 22ab1 vvab=所以ba式得出一个推论:行星运动的速率与它距离成反比,也就是我们熟知的近日点快远日点慢的结论。式也当之无愧的作为第二定律的数学表达式。第三定律:所有行星的轨道半长轴的三次方跟它的公转周期平方的比值都相等。a3= k用 表示半长轴,t 表示周期,第三定律的数学表达式为,k 与中心天体的质量有at2a3= k(m )关即k 是中心天体质量的函数。不同中心天体k 不同。今天我们可以由万有t2mm4prgmgm223= mr 得=引力定律证明:g的质量 m 。即k

4、(m )可见 k 正比与中心天体rtt4p4p 2322a3= k(m )式是普遍意义下的开普勒第三定律多用于求解椭圆轨道问题。t2rgm3=式是站在圆轨道角度下得出多用于解决圆轨道问题。为了方便记忆与区分我t4p22们不妨把式称为官方版开三,式成为家庭版开三。【问题二】:天体的自转模型1、重力与万有引力的区别地球对物体的引力是物体具有重力的根本原因,但重力又不完全等于引力。这是因为地球在不停的自转,地球上所有物体都随地球自转而绕地轴做匀速圆周运动,这就需要向心力。= m r w,式中 是物体与地轴的距离, 是地这个向心力的方向垂直指向地轴大小为 fw2r球自转角速度。这个向心力来源于物体受到

5、的万有引力,它是引力的一个分力,另一个分力才是物体的重力。w不同纬度的地方,物体做匀速圆周运动的角速度 相同,而做圆周运动的半径 不同,r该半径在赤道最大在两极最小(为0 )纬度为 q 处的物体随地球自转所需的向心力wwqf = m r = m rcos (r 为地球半径)由此可见随纬度的升高,向心力减小,在两极222 rcos = 0、f = 0万有引力等于重力,作为引力的另一个分力重力则随纬度升高而增大。处q(1)、在赤道上:万有引力、重力、向心力均指向地心则有mmg2r12mmg= mgr22mm(3)、在一般位置:万有引力g等于重力mg 与向心力f的矢量和,如图。越靠近南向r2北两极

6、g 值越大,由于物体随地球自转所需的向心力较小,常认为万有引力近似等于重力,mm即g= mg。r2所谓天体的不瓦解是指,存在自转的情况下,天体表面的物体不会脱离天体表面。天体自转时,天体表面的各部分随天体做匀速圆周运动,由于赤道部分所需向心力最大,如果赤道上的物体不脱离地面那么其他地方一定不会脱离地面。则要使天体不瓦解则要满足:gmm又r22pw=t4m =r3 rp33pr得:gt2将t = 24h稳定状态。带入得 r 18.9kg / m3 而地球的密度为 r = 5523kg / m3 足以保证地球处于【问题二】:近地问题+绕行问题mm1、在中心天体表面或附近,万有引力近似等于重力g=

7、mg ,即gm = gr2r22、利用天体表面的重力加速度 g 和天体半径 r(g、r 法)mmgr2,故天体质量 m ,天体密度 v 43r3mm3g4gr由于g= mg。gr23 3、在距天体表面高度为h 处的重力加速度在距天体表面高度为h 处,万有引力引起的重力加速度g ,由牛顿第二定律得mmmr2 =mg g =即 g g=g(r + h)2r h r h( + )2 ( + )2即重力加速度随高度增加而减小。4、通过观察卫星绕天体做匀速圆周运动的周期t,轨道半径 r(t、r 法)mmr24t4 r2 3gt22(1)由万有引力等于向心力,即 gm r,得出中心天体质量 m;2(2)若

8、已知天体的半径 r,则天体的密度mm3r3 v 4;gt r2 33r3(3)若天体的卫星在天体表面附近环绕天体运动,可认为其轨道半径r 等于天体半径 r,3则天体密度 gt 。可见,只要测出卫星环绕天体表面运动的周期 t,就可估测出中心天2体的密度。问题四:人造卫星问题1分析人造卫星运动的两条思路mmr2(1)万有引力提供向心力即 gma。gmmr2(2)天体对其表面的物体的万有引力近似等于重力,即mg 或 gr gm(r、g 分别2是天体的半径、表面重力加速度),公式 gr gm 应用广泛,被称为“黄金代换”。22人造卫星的加速度、线速度、角速度、周期与轨道半径的关系4 vgm 12m v

9、 =rrr4pr32m t = 2p rmmtgmgm 12g=r2mw r w =2rr3gmma a =rnn2由此可以得出结论:一定(r )四定;越远越慢。3同步卫星的六个“一定”轨道平面一定:轨道平面和赤道平面重合周期一定:与地球自转周期相同,即t = 24h = 86400ss.角速度一定:与地球自转的角速度相同3rgmgmt32=r= 4.2410 km高度一定:根据开普勒第三定律t得:4又因为4p4p2223gmt2r = r + hh=- r 6r。所以4p22 rp速率一定:运动速度v = 3.08km/ s(为恒量)t绕行方向一定:与地球自转的方向一致4、赤道上的物体与近地

10、卫星、同步卫星的比较赤道表面的物体万有引力的分力重力与万有引力的关系重力略小于万有引力重力等于万有引力5 gmrgmv=1123线速度角速度13223gmr321132a (rh) 233gmr221122向心加速度132问题五:卫星变轨模型【模型构建】将同步卫星发射至近地圆轨道1(如图所示),然后再次点火,将卫星送入同qp步轨道 3轨道 1、2 相切于 点,2、3 相切于 点,则当卫星分别在 1、2、3 轨道上正常运行时1、阐述卫星发射与回收过程的基本原理?答:发射卫星时,可以先将卫星发送到近地轨道1,使其绕地球做匀速圆周运动,速率vqvv为 ;变轨时在 点点火加速,短时间内将速率由 增加到

11、 ,使卫星进入椭圆形的转移112p轨 2;卫星运行到远地点 时的速率为 ;此时进行第二次点火加速,在短时间内将速率v3vv由 增加到 ,使卫星进入同步轨道 3,绕地球做匀速圆周运动。342、就 1、2 轨道比较卫星经过q 点时线速度 、 的大小?12。21p3、就 2、3 轨道比较卫星经过 点时线速度 、 的大小?v v34v v答:根据发射原理 1 轨道稳定运行的卫星需要加速才能进入 2 轨道所以。216 【小结】2、3 两个问题主要是比较椭圆轨道与圆轨道线速度问题解决思路是抓住轨道的成因。4、就 2 轨道比较q 、 两点的线速度 、v 大小?pv23答:在转移轨道 2 上,卫星从近地点q

12、向远地点 p 运动过程只受重力作用,机械能守恒。 v重力做负功,重力势能增加,动能减小。故v。23【小结】实质是比较椭圆轨道不同位置的线速度大小问题可归纳为近点快远点慢5、比较 1 轨道卫星经过q 点 3 轨道卫星经过 点时两点线速度 、v 的大小?pv13mmvgmr2= m=r r v v由于 故 。答:根据g得vrr31132【小结】实质是比较两个圆轨道的线速度抓住“越远越慢”。6、就 1、2 轨道比较卫星经过q 点时加速度的大小?mmm= ma a = g得答:根据g可见加速度取决于半径r 无论是 1 轨道还是 2 轨道q 到rr22中心天体的半径都是一样大所以加速度相同。7、就 2、

13、3 轨道比较卫星经过 p 点时加速度的大小?mmm= ma a = g得答:根据g可见加速度取决于半径r 无论是 2 轨道还是 3 轨道 p 到rr22中心天体的半径都是一样大所以加速度相同。【小结】比较不同天体的加速度只需要比较它们到达中心天体的距离即可跟轨道的现状无关。8、卫星在整个发射过程能量将如何变化?答:要使卫星由较低的圆轨道进入较高的圆轨道,即增大轨道半径(增大轨道高度 h),一定要给卫星增加能量。与在低轨道 1 时比较(不考虑卫星质量的改变),卫星在同步轨 3 上的动能 e 减小了,势能增大了,机械能 e 也增大了。增加的机械能由化学能转化而来。机ekp【小结】动能:越远越小;势

14、能:越远越大;机械能:高轨高能。7 9、若 1 轨道的半径为 r ,3 轨道的半径为 r 若轨道 1 的周期为 t 则卫星从q 到 p 所用的12时间为多少?(椭圆轨道周期的求法)r + r答:设飞船的椭圆轨道的半长轴为 a,由图可知a=.设飞船沿椭圆轨道运行的周期为t,由122t( + )t r rr32a33=t=t =由以上三式求解得q p到112开普勒第三定律得.飞船从的时间2242r3tt110、若已知卫星在 3 轨道运行的周期为t ,中心天体的半径为 r 则卫星距离中心天天表面的高度为?3r3gmgmt2=r= +又因为r r h答:根据开普勒第三定律得:4p 24p 2t23gm

15、t2所以 h=- r。4p2问题六:双星模型、三星模型、四星模型【双星模型】1、模型构建在天体运动中,将两颗彼此相距较近,且在相互之间万有引力作用下绕两者连线上的某点做周期相同的匀速圆周运动的行星称为双星。2、模型特点如图所示为质量分别是 m 和 m 的两颗相距较近的恒星。 它们间的12距离为 l .此双星问题的特点是:(1)两星的运行轨道为同心圆,圆心是它们之间连线上的某一点。(2)两星的向心力大小相等,由它们间的万有引力提供。(3)两星的运动周期、角速度相同。+ r = l(4)两星的运动半径之和等于它们间的距离,即r.128 3、规律推导设:两颗恒星的质量分别为m 和m ,做圆周运动的半

16、径分别为r 、r ,角速度分别为w 、12121w 。根据题意有2w w w=12r + r = l12根据万有引力定律和牛顿定律,有m mgg= m w r1l22211 1m m= m w r1l22222 2/得mr2r=1m21mr =1ll2m+ m联立得:12mr =21m+ m12分别化简得mgg= r2w2l21 1m1l2w= r22 2(m + m )2pww2w=又= (r + r ) = l相加得g得122l212t9 4 lp3(m + m ) =12gt 2双星问题的两个结论mr2r=(1)运动半径:,即某恒星的运动半径与其质量成反比。1m214 l2 3(2)质量

17、之和:两恒星的质量之和 m m 。gt212问题七 天体的“追及相遇”问题【模型构建】如图所示,有 a、b 两颗卫星绕同颗质量未知,半径为 的行星做匀速圆周r运动,旋转方向相同,其中 a 为近地轨道卫星,周期为t ,b 为静止轨道卫星,周期为t ,12在某一时刻两卫星相距最近,再经过多长时间t ,两行星再次相距最近(引力常量 g 为已知)2gmr= m=根据万有引力提供向心力,即g得v,所以当r2r天体速度增加或减少时,对应的圆周轨道会发生相应的变化,所以天体不可能能在同一轨道上追及或相遇。这里提到的相距最近应指二者共线的时候。由图示可知 a 离中心天体近所以速度大运动的快。设二者经过时间tq wq w= t= t后再次“相遇”在这段时间内 a 所发生的角位移为,b 所发生的角位移为1122w 、w 分别为 a、b 的角速度。假定 b 不动下次二者共线时二者的角位移满足12w -w2ptt =12w wtt-= 1式变形得:又根据122p 2p2ptt=wtt t- = 1=联立得:化简得t1 2t t1t -t22110 式揭示了:我只要知道两个不同轨道卫星的运行周期就可以估算出他们从某次最近到下一次最近的时间了。接下来我们讨论两颗卫星从图示位置经过多长时间相距最远。任然假定 b 不动由几何关系可得二者的角位移满足w -w

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论