微积分复习附解题技巧_第1页
微积分复习附解题技巧_第2页
微积分复习附解题技巧_第3页
微积分复习附解题技巧_第4页
微积分复习附解题技巧_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、微积分复习及解题技巧第一章函数一、据定义用代入法求函数值:典型例题:综合练习第二大题之2二、求函数的定义域:(答案只要求写成不等式的形式,可不用区间表 示)对于用数学式子来表示的函数,它的定义域就就是使这个式子有 意义的自变量x的取值范围(集合)主要根据: 分式函数:分母工0 偶次根式函数:被开方式0 对数函数式:真数式0 反正(余)弦函数式:自变量 1在上述的函数解析式中,上述情况有几种就列出几个不等式组成 不等式组解之。典型例题:综合练习第二大题之11补充:求y= 2 x的定义域。(答案:2 x )V1 2x2三、判断函数的奇偶性:典型例题:综合练习第一大题之3、4第二章极限与连续求极限主

2、要根据:1、常见的极限:sin xlim 11lim 厂 ()x X2、利用连续函数:lim f(x) f(x)X x初等函数在其定义域上都连续。例:1阮13、求极限limxf(x)g(x)的思路:lim f(x)C1 (C1 常数)lim g(x)C2(C2 常数)可考虑以下9种可能:0型不定式(用罗彼塔法则)2=C2C2-= C1=OOC2型不定式(用罗彼塔法则)特别注意:对于f(x)、g(x)都就是多项式的分式求极限时,解法见教材P70下总结的“规律”。以上解法都必须贯穿极限四则运算的法则!典型例题:综合练习第二大题之3、4;第三大题之1、3、5、7、8.2补充 1:若 lim s2n

3、(x 1)1,则 a= -2X i x ax b,b=1、x1?兰x2x 1x 1.12补充 2:lim x 1lim 1xxx 1e2补充3:1 1 11, 1.111 lim 1.lnm 23 3 51 1lnm 1 33 5 5 7 .(2n1)(2 n 1).2n 1 2n 11lim 1 -242n 12补充-4:ln xlimx 1x 10型10lim1x 1X 11(此题用了“罗彼塔法则”)第三章导数与微分一、根据导数定义验证函数可导性的问题:典型例题:综合练习第一大题之12二、求给定函数的导数或微分:求导主要方法复习:1、求导的基本公式:教材P123 2、求导的四则运算法则:教

4、材P110-111 3、复合函数求导法则(最重要的求导依据) 4、隐函数求导法(包括对数函数求导法)6、求高阶导数(最高为二阶)7、求微分:dy=y/ dx即可典型例题:综合练习第四大题之1、2、7、2arctgx1 x2补充:设 y二、x2 1 (arctgx)2,求 dy、解:T y -,_ 2x 2arctgx dy= y dx2arctgx1 x22 4T71 x2;1 x2)dx第四章 中值定理 ,导数的应用 一、关于罗尔定理及一些概念关系的识别问题 : 典型例题 :综合练习第一大题之 16、19 二、利用导数的几何意义 ,求曲线的切、法线方程 : 典型例题 :综合练习第二大题之 5

5、 二、函数的单调性 (增减性 )及极值问题 : 典型例题 :综合练习第一大题之 18,第二大题之 6,第六大题之 2第五章不定积分第六章 定积分I理论内容复习:1、原函数:F (x) f (x)则称F(x)为f(x)的一个原函数。2、不定积分:概念:f(x)的所有的原函数称f(x)的不定积分f(x)dx F(x) C注意以下几个基本事实:f(x) Cf(x) Cf (x)dxf (x)f (x)dxd f(x)dx f (x)dxdf(x)性质:a f (x)dx a f (x)dx(注意a 0)f (x) g(x) dx f (x)dx g(x)dx基本的积分公式:教材P2063、定积分:定

6、义几何意义性质:教材P234235性质1 3求定积分方法:牛顿一莱布尼兹公式H习题复习:一、关于积分的概念题: 典型例题:综合练习第一大题之22、24、25、第二大题之11、14、求不定积分或定积分可供选用的方法有一一直接积分法:直接使用积分基本公式 换元积分法:包括第一类换元法(凑微分法)、第二类换元法分部积分法 典型例题:综合练习第五大题之2、3、5、6关于“换元积分法”的补充题一:dx2x 11 12 2x 1d(2x1)-ln2x 1 C2关于“换元积分法”的补充题二xdx解:设 x - 3=t2, 即,x 3 =t,则 dx=2tdt、2- xdx = (t 3) 2t 21 严 1

7、 C dt = 2 t 6t C、x 3t2 12 32 3 =t6t C = (. x 3)6:x 3 C33关于“换元积分法”的补充题三:8 dx013 x解:设 x=t3,即 3 xt ,则 dx=3t2dt、当 x=0 时,t=0;当 x=8 时,t=2、 所以8 dx 2 3t 2dto1 3 x =0 Tr2 3(t 1)丄 dt 3(t 1)2ln1 t,即变量x换01 t2 =3ln3 (此题为定积分的第二类换元积分法,注意“换元必换限” 成变量t后,其上、下限也从0、8变为0、2)关于“分部积分法”的补充题一:xexdxxdexxexexdx (x 1)ex关于“分部积分法”

8、的补充题二 :arctgxdx xarctgx关于“分部积分法”x 7 dx arctgx 1 x的补充题三:exln xdx1 -x2l(e221e21)2 21 in xdx21 x2l nxee 2x d l n x-x2lnxe exdx1 2 -e1 2 -x2 121 121 122e11(此题为定积分的分部积分法)三、定积分的应用(求曲线围成的平面图形面积):典型例题:综合练习第六大题之4注意:此题若加多一条直线y=3x,即求三线所围平面图形的面积,则解法为一一(草图略)132132S= o(3x x)dx 1 (3x x )dx= Q2xdx 1 (3x x )dx=21x212 03x22!x3331=127=13 (平方单位)使用指南本 复习参考资料 应当与人手一册的 综合练习题 配套使用并服从于 综合练习题 。另外 ,请 注意如下几点 :本 复习参考资料 中的蓝色字体的“补 充”题就是以往年级的部分应试复习题 ,对今年 9 月份考试的同志来说 , 仅仅作为参考补充。 综合练习题就是我们复习重点中的重点, 请对照答案将 所有题目完整地做一遍 (使题目与 答案相结合而不要相分离 , 以便需要时加快查 找的速度与准确度 )。 请将上述做好的综合练习题 随身携带 ,经常 复习、记忆

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论