




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、中央财经大学统计学院 第8章 时间序列分析 time series analysis 8.1 时间序列的分解 8.2 指数平滑 8.3 arima模型 中央财经大学统计学院 2 学习目标学习目标 l理解时间序列分析中的基本概念;理解时间序列分析中的基本概念; l掌握时间序列成分的分解方法;掌握时间序列成分的分解方法; l掌握根据时间序列的组成成分进行掌握根据时间序列的组成成分进行 预测的方法;预测的方法; l掌握时间序列的指数平滑预测方法掌握时间序列的指数平滑预测方法 l熟悉熟悉arimaarima模型特性,了解建模方法模型特性,了解建模方法 中央财经大学统计学院 3 为什么要进行时间序列分析
2、?为什么要进行时间序列分析? l 个人、企业和政府都需要根据历史数据(时间序 列)对现象的未来发展作出预测并采取相应的决策, 时间序列分析为我们提供了相应的分析工具。 l我国每年年初都要对当年的主要经济指标作出预 测,每个五年计划中要对未来五年的经济和社会 发展进行预测。 l股票经纪人要对股票市场的未来走势作出及时的 预测并相应作出买入或卖出的决策。 l企业经理人员的决策中经常需要对 未来的市场供求进行预测。 中央财经大学统计学院 4 8.1 时间序列的分解时间序列的分解 l8.1.1 时间序列的构成成分时间序列的构成成分 l8.1.2 时间序列分解模型时间序列分解模型 l8.1.3 时间序列
3、长期趋势分析时间序列长期趋势分析 l8.1.4 时间序列季节变动分析时间序列季节变动分析 l8.1.5 时间序列循环变动分析时间序列循环变动分析 l8.1.6 时间序列分解预测法时间序列分解预测法 中央财经大学统计学院 5 8.1.1 时间序列的构成成分 l一个时间序列中可能包含以下四个(或者一个时间序列中可能包含以下四个(或者 几个)组成成分:几个)组成成分: l长期趋势长期趋势 (secular trend ,t) l季节变动季节变动 (seasonal variation , s) l循环波动循环波动 (cyclical variation , c) l不规则波动不规则波动 (irreg
4、ular variation, i ) 中央财经大学统计学院 6 长期趋势 l现象在较长时期内 持续发展变化的一 种趋向或状态 l可以分为线性趋势 和非线性趋势 中央财经大学统计学院 7 季节变动( s ) l 由于季节的变化引起的现象发 展水平的规则变动。季节变动 产生的原因主要有两个: l自然因素; l人为因素: 法律、习俗、 制度等 l“季节变动”也用来指周期小 于一年的规则变动,例如24小 时内的交通流量。 中央财经大学统计学院 8 循环变动(c) l 以若干年为周期、不具严 格规则的周期性连续变动。 l与长期趋势不同,它不是朝 着单一方向的持续运动,而 是涨落相间的波浪式起伏变 化;
5、 l与季节变动也不同,它的波 动时间较长,变动的周期长 短不一,变动的规则性和稳 定性较差。 中央财经大学统计学院 9 不规则变动(i) l由于众多偶然因素 对时间序列造成的 影响。 l 不规则变动是不 可预测的。 中央财经大学统计学院 10 ttttt icsty 8.1.2 时间序列分解模型 l时间序列的组成成分之间可能是乘法或加法的关 系,因此,时间序列可用多种模型进行分解,常 见的有加法模型、乘法模型和加乘混合模型。 l加法模型假设时间序列中每一个指标数值都是长 期趋势、季节变动、循环变动和不规则变动四种 成分的总和,在加法模型中,四种成分之间是相 互独立的。某种成分的变动并不影响其他
6、成分的 变动。各个成分都用绝对量表示,并且具有相同 的量纲。 中央财经大学统计学院 11 ttttt icsty 乘法模型乘法模型 l乘法模型乘法模型是假设时间序列中每一个指标数 值都是长期趋势、季节变动、循环变动和 不规则变动四种成分的乘积。在乘法模型 中, 四种成分之间保持着相互依存的关系。 一般而言,长期趋势成分用绝对量表示, 具有和时间序列本身相同的量纲,其它成 分则用相对量表示。 中央财经大学统计学院 12 l加乘混合模型,比如 l 时间序列分解模型的选取需要考虑到现象变化 的规律和数据本身的特征,如果季节变动(循环 变动、不规则变动)依赖于长期趋势的变化,则 宜选用乘法模型或加乘混
7、合模型,否则可以考虑 加法模型。 ttttt ictsy ttttt ytcsi 加乘混合模型加乘混合模型 中央财经大学统计学院 13 8.1.3 时间序列长期趋势分析 l研究目的: l通过测定和分析过去一段时间之内现象的 发展趋势,来认识和掌握现象发展变化的 规律性; l通过分析现象的长期趋势,为统计预测提 供必要的条件; l消除原有时间序列中长期趋势的影响,更 好地研究季节变动和循环变动等问题。 中央财经大学统计学院 14 1 移动平均法 l移动平均法:在原时间序列内依次求连 续若干期的平均数作为其某一期的趋势 值,如此逐项递移求得一系列的移动平 均数,形成一个新的、派生的平均数时 间序列
8、。 l 在新的时间序列中偶然因素的影响被削 弱,从而呈现出现象在较长时间的基本 发展趋势。 中央财经大学统计学院 15 l把时间序列连续 n 期的平均数作为最近一 期(第t期)的趋势值: )( 1 11 )1( ntttt yyy n m n 期移动平均数期移动平均数 中央财经大学统计学院 16 l把时间序列连续 n 期的平均数作为 n 期的中间一期 的趋势值。 l如果n为奇数,则把n期的移动平均值作为中间一期 的趋势值。 l如果n为偶数,须将移动平均数再进行一次两项移 动平均,以调整趋势值的位置,使趋势值能对准某 一时期)。相当于对原序列进行一次n+1 项移动平均, 首末两个数据的权重为0.
9、5,中间数据权重为1。 为偶数)nyyyy n m ntntttnt ()5 . 05 . 0( 1 112/ 中心化移动平均中心化移动平均 中央财经大学统计学院 17 example 1 l新卫机械厂的销售收入(万元):新卫机械厂的销售收入(万元): 年份年份销售销售 收入收入 年份年份销售销售 收入收入 年份年份销售销售 收入收入 年份年份销售销售 收入收入 19851080199021601995216020003240 19861260199123401996234020013420 19871800199219801997288020023240 198816201993252019
10、98306020033060 19891440199425591999270020043600 中央财经大学统计学院 18 中心移动平均法中心移动平均法 销售销售 收入收入 3 3年移年移 动平均动平均 销售销售 收入收入 4 4年移动平年移动平 均均 移正移正 198519851080108010801080 19861986126012601380138012601260 1987198718001800156015601800180014851485 198819881620162016201620162016201642.51642.5 198919891440144017401740
11、144014401822.51822.5 14401440 15301530 17551755 18901890 中央财经大学统计学院 19 移动平均的结果 中央财经大学统计学院 20 example 2 l 移动平均法可以作为测定长期趋势的一种 较为简单的方法,在股市技术分析中有广 泛的应用。比如对某只股票的日收盘价格 序列分别求一次5日、10日、一个月的移动 平均就可以得到其5日、10日、一个月的移 动平均股价序列,进而得到5日线、10日线、 月线,用以反映股价变动的长期趋势。 中央财经大学统计学院 21 移动平均股价序列移动平均股价序列 中央财经大学统计学院 22 l移动平均法一般用来消
12、除不规则变动的 影响,把序列进行修匀(smoothing), 以观察序列的其他成分。 l如果移动平均的项数等于季节长度则可以消除 季节成分的影响; l如果移动平均的项数等于平均周期长度的倍数 则可以消除循环变动的影响。 l由于区分长期趋势和循环变动比较困难,在 应用中有时对二者不做区分,而是把两项合 在一起称为“趋势循环”成分(trend-cycle)。 移动平均法的应用 中央财经大学统计学院 23 2、时间回归法(趋势方程法) l使用回归分析中的最小二乘法,以时间t 或t的函数为自变量拟合趋势方程。 l习惯上t的取值为从1到n。也可以取其他值, 不同取值方法不会影响到方程的拟合效果。 l常用
13、的趋势方程包括: l线性趋势方程 l二次曲线 l指数曲线 中央财经大学统计学院 24 趋势线的选择 l1、根据散点图观察数据的特点,结合理 论分析和经验确定。 l2、 比较不同回归模型的决定系数、估计 标准误等指标。 中央财经大学统计学院 25 趋势方程的估计方法 l趋势方程可以使用回归分析中的最小二乘 法进行估计。 l对于线性趋势方程,根据回归分析中推导 出的结果,有 b ntyty ntt ()() () 22 aybt 中央财经大学统计学院 26 example 1: 新卫机械厂的销售收入 部分数据部分数据 销售销售 收入收入 t t 198510801 198612602 198718
14、003 198816204 198914405 2003306019 2004360020 中央财经大学统计学院 27 excel的计算结果 回归统计回归统计 multiple r0.944964 r square0.892958 adjusted r square0.887011 标准误差标准误差248.0092 观测值观测值20 f signific ance f 150.1578 3.6e-10 coefficien ts 标准误差标准误差t statp-value intercept1185.52 115.21 10.29 0.0000 t117.85 9.62 12.25 0.000
15、0 中央财经大学统计学院 28 趋势方程 中央财经大学统计学院 29 example 2: 销售额时间序列 2 40.851 0.0090.003 t ytt 中央财经大学统计学院 30 8.1.4 时间序列季节变动分析 l测定目的: l确定现象的季节变化规律以用于预测 l消除时间序列中的季节因素 l测定季节变动,一般需要先从原时间序列中 剔除可能存在的长期趋势,因此需要在一定 的模型假定下进行,也有不同的计算方法。 实际中乘法模型较为常用,下面以乘法模型 为例,介绍移动平均剔除法(ratio-to- moving-average method) 。 中央财经大学统计学院 31 季节指数 l乘
16、法模型中的季节成分通过季节指数来反映。 l季节指数(季节比率):反映季节变动的相 对数。 l1、月(或季)的指数之和等于1200%(或 400%) 。 l2、季节指数离100越远,季节变动程 度越大,数据越远离其趋势值。 中央财经大学统计学院 32 用移动平均趋势剔除法计算季节指数用移动平均趋势剔除法计算季节指数 l1、计算移动平均值(tc),移动期数为4或 12,注意需要进行移正操作。 l2、从序列中剔除移动平均值(siy/tc)。 l3、 l4、如果季节系数之和不等于为400%或 1200%,需要用调整系数调整。 %100 )( )( )( 平均数季总月 平均数季同月 季节指数s 中央财经
17、大学统计学院 33 案例: 海鹏网球中 心的利润。 一季度一季度二季度二季度三季度三季度四季度四季度 200060255270105 2001120315360150 2002135390405195 2003180495525225 2004240630690285 中央财经大学统计学院 34 季节指数的计算 ytcy/tc 2000.12000.16060 2000.22000.2255255172.5172.5 2000.32000.3270270187.5187.5180180150.00 150.00 2000.42000.4105105202.5202.519519553.85 5
18、3.85 2001.12001.1120120225225213.75213.7556.14 56.14 2001.22001.2315315236.25236.25230.625230.625136.59 136.59 2001.32001.3360360240240238.125238.125151.18 151.18 2001.42001.4150150258.75258.75249.375249.37560.15 60.15 2002.12002.1135135270270264.375264.37551.06 51.06 2002.22002.2390390281.25281.252
19、75.625275.625141.50 141.50 2002.32002.3405405292.5292.5286.875286.875141.18 141.18 270/180*100% 中央财经大学统计学院 35 季节指数的计算 一季度一季度二季度二季度三季度三季度四季度四季度 20002000 150150 53.8461553.84615 2001200156.1403556.14035136.5854136.5854 151.1811151.1811 60.1503860.15038 2002200251.0638351.06383141.4966141.4966 141.1765
20、141.1765 63.8036863.80368 2003200353.9325853.93258140.4255140.4255 144.3299144.3299 57.9710157.97101 2004200456.3876756.38767138.843138.843 54.3811154.38111139.3376139.3376 146.6719146.6719 58.9428158.9428199.8333599.83335 54.4718954.47189139.5702139.5702 146.9167146.916759.041259.0412400400 中央财经大学统
21、计学院 36 季节指数的图形 中央财经大学统计学院 37 0 100 200 300 400 500 600 700 800 2000.1 2000.3 2001.1 2001.3 2002.1 2002.3 2003.1 2003.3 2004.1 2004.3 y s = ts ci s = tci 季节调整(seasonal adjustment) l将原序列实际数值除以季节指数可以消除季 节变动的影响。此数列通常被称为“季节调 整后的序列”, 它便于较为准确地分析长期 趋势和循环变动。 中央财经大学统计学院 38 l对销售额时间序列,分别利用乘法模型和 加法模型由spss软件计算出的季
22、节指数和 季节因素后,可以看出,销售旺季为8月份, 淡季为12月份。 销售额时间序列的例子(销售额时间序列的例子(spss软件)软件) 中央财经大学统计学院 39 时间序列图形时间序列图形 l从数据图可以看出,销售额时间序列的季节变化并未 表现出与长期趋势明显的依赖性,因此,使用加法模 型分析该销售额时间序列的季节变动较为合适。 月份乘法模型 季节指数() 加法模型 季节因素(百万元) 1 2 3 4 5 6 7 8 9 10 11 12 101.640 106.828 94.727 94.091 94.781 102.898 104.569 108.162 102.209 103.599 9
23、7.455 89.041 0.972 4.074 -3.028 -3.565 -3.244 1.909 2.711 4.443 1.258 2.131 -1.474 -6.187 销售额时间序列的例子销售额时间序列的例子 中央财经大学统计学院 41 销售额时间序列的季节变动(加法模型) 销售额时间序列的例子销售额时间序列的例子 中央财经大学统计学院 42 8.1.5 时间序列循环变动分析 l 实际中常采用剩余法测定循环变动。这种方法须 先从原时间序列中消除长期趋势、季节变动和不规 则变动,求得循环变动指数。 l计算步骤: l1、如果有季节成分,计算季节指数,得到季节 调整后的数据(tci);
24、l2、根据趋势方程从季节调整后的数据中消除长 期趋势得到序列ci; l3、对消去季节成分和趋势值的序列ci进行移动 平均以消除不规则波动 ,得到循环变动成分c。 中央财经大学统计学院 43 循环变动 y ys sy/s=tciy/s=tcit tt ty/st=cic 2000.12000.1606054.47 54.47 110.15 110.15 1 1130.51 130.51 84.40 84.40 2000.22000.2255255139.57 139.57 182.70 182.70 2 2148.35 148.35 123.15 123.15 106.04 106.04 200
25、0.32000.3270270146.92 146.92 183.78 183.78 3 3166.20 166.20 110.58 110.58 110.12 110.12 2000.42000.410510559.04 59.04 177.84 177.84 4 4184.04 184.04 96.63 96.63 105.44 105.44 2001.12001.112012054.47 54.47 220.30 220.30 5 5201.89 201.89 109.12 109.12 102.82 102.82 2001.22001.2315315139.57 139.57 225.
26、69 225.69 6 6219.73 219.73 102.71 102.71 104.99 104.99 2004.12004.124024054.47 54.47 440.59 440.59 1717416.02 416.02 105.91 105.91 101.88 101.88 2004.22004.2630630139.57 139.57 451.39 451.39 1818433.87 433.87 104.04 104.04 104.64 104.64 2004.32004.3690690146.92 146.92 469.65 469.65 1919451.71 451.71
27、 103.97 103.97 103.60 103.60 2004.42004.428528559.04 59.04 482.71 482.71 2020469.56 469.56 102.80 102.80 trend= 112.67+17.845t 趋势方程 也可根据 未进行季 节调整的 序列估计. 中央财经大学统计学院 44 循环 变动 的图 形 l由于只有4年的数据,本例的结果只是说 明性的,从结果中还无法看到现象在更 长时期内的循环变动情况。 l有时对长期趋势和循环变动不做区分, 而是合在一起称为“趋势循环”成分。 80 85 90 95 100 105 110 115 2000.1
28、 2000.2 2000.3 2000.4 2001.1 2001.2 2001.3 2001.4 2002.1 2002.2 2002.3 2002.4 2003.1 2003.2 2003.3 2003.4 2004.1 2004.2 2004.3 2004.4 中央财经大学统计学院 45 不规则变动 l如果需要,还可以进一步分解出不如果需要,还可以进一步分解出不 规则变动成分:规则变动成分: i= ts ci tsc 80 85 90 95 100 105 110 115 120 2000.1 2000.2 2000.3 2000.4 2001.1 2001.2 2001.3 2001.
29、4 2002.1 2002.2 2002.3 2002.4 2003.1 2003.2 2003.3 2003.4 2004.1 2004.2 2004.3 2004.4 中央财经大学统计学院 46 8.1.6 时间序列分解预测法 l预测是时间序列分析的重要目的之一预测是时间序列分析的重要目的之一 l分解预测法就是依据时间序列的结构模型 将序列中的各种非随机成分分离出来,分 别进行预测,最后将各部分预测值合成总 的预测值。这种方法直观易懂并可以提供 较多有用的信息,从不同的方面把握数据 的变化特征。 中央财经大学统计学院 47 ltltltlt csty 由建立的趋势模型得到由建立的趋势模型得
30、到 lt t lt s lt c 可用同期季节指数代替可用同期季节指数代替 可用半定量化方法预测,即根据分离出的可用半定量化方法预测,即根据分离出的 循环变动指数的变化趋势,循环变动指数的变化趋势,主观判断主观判断取值取值 的大小。若循环变动不明显,可忽略。有的大小。若循环变动不明显,可忽略。有 时候和长期趋势合在一起预测。时候和长期趋势合在一起预测。 以乘法模型为例以乘法模型为例 中央财经大学统计学院 48 l为了考察预测效果,利用1990.12001.12 数据对2002年各月的销售额进行预测,这 样可以计算预测误差。 l首先原始序列进行成分分解,这里我们选 择乘法模型(分析预测季节性分解
31、), 得到序列的季节指数和季节调整后的序列。 example : 销售额时间序列分解法预测 (spss) 中央财经大学统计学院 49 l根据季节调整后的序列(包含tci成分)拟合二 次趋势方程。 l因为t在模型中不显著,被从模型中剔除 l注:也可以根据原始数据拟合趋势方程;或者对 原始序列的12期中心化移动平均序列(包含tc成 分)建立趋势模型。 example : 销售额时间序列分解法预测 (spss):长期趋势的估计 2 003. 0590.40 ty 中央财经大学统计学院 50 l利用二次模型预测出2002年各月份的销售 额的趋势值,再乘以季节指数就可以得到 2002年各月份的销售额的预
32、测值。 example : 销售额时间序列分解法预测 (spss) 中央财经大学统计学院 51 销售额时间序列与分解法预测(乘法模型) 中央财经大学统计学院 52 预测误差的测度指标 l衡量预测误差大小的常用指标主要有:衡量预测误差大小的常用指标主要有: l1、平均绝对误差、平均绝对误差(mean absolute error) l2、均方误差、均方误差(mean squared error) n i tt yy n mae 1 | | 1 n i tt yy n mse 1 2 ) ( 1 中央财经大学统计学院 53 预测误差的测度指标 l3、均方根误差、均方根误差(root mean sq
33、uared error) l4、平均绝对百分误差(、平均绝对百分误差(mean absolute percentage error),用来衡量相对误),用来衡量相对误 差的大小。差的大小。 %100 1 t tt y yy n mape n i tt yy n rmse 1 2 ) ( 1 中央财经大学统计学院 54 乘法模型的预测误差乘法模型的预测误差 趋势值趋势值季节指季节指数数预测值预测值实际值实际值绝对误差绝对误差 jan-0293.45 101.76 95.09 94.28 0.81 feb-0294.18 107.08 100.85 98.89 1.96 mar-0294.92 9
34、4.63 89.82 91.09 1.27 apr-0295.66 93.81 89.74 93.84 4.10 may-0296.41 94.50 91.11 94.17 3.06 jun-0297.16 102.63 99.72 103.06 3.34 jul-0297.92 104.65 102.47 102.29 0.18 aug-0298.68 108.64 107.21 102.31 4.90 sep-0299.45 102.23 101.66 100.15 1.51 oct-02100.22 103.73 103.95 101.03 2.92 nov-02100.99 97.42
35、 98.39 101.27 2.88 dec-02101.78 88.92 90.50 97.94 7.44 平均绝对误差平均绝对误差2.86 中央财经大学统计学院 55 乘法模型的预测误差乘法模型的预测误差 lmae=2.86 lmse=11.83 lrmse=3.44 lmape=2.91% 中央财经大学统计学院 56 8.2 指数平滑指数平滑 exponential smoothing l8.2.1 单参数(一次)指数平滑 l8.2.2 双参数指数平滑 l8.2.3 三参数指数平滑 中央财经大学统计学院 57 指数平滑方法的基本原理指数平滑方法的基本原理 l指数平滑是一种加权移动平均,既
36、可以用来描述时 间序列的变化趋势,也可以实现时间序列的预测。 l指数平滑预测的基本原理是:用时间序列过去取值 的加权平均作为未来的预测值,离当前时刻越近的 取值,其权重越大。 中央财经大学统计学院 58 ttt yyy )1 ( 1 式中: 1 t y表示时间序列第t+1期的预测值; t y 表示时间序列第t期的实际观测值; t y 表示时间序列第t期的预测值; 表示平滑系数,01。 11 1 2 2 1 1 )1 ()1 ()1 ()1 ( )1 ( yyyyy yyy tt ttt ttt 8.2.1 单参数(一次)指数平滑单参数(一次)指数平滑 l单参数指数平滑的模型为: 中央财经大学统
37、计学院 59 适用场合适用场合 l单参数(一次)指数平滑适用于不包含长 期趋势和季节成分的时间序列预测 l如果原序列有增长趋势,平滑序列将系统 的低于实际值 l如果原序列有下降趋势,平滑序列将系统 的高于实际值 中央财经大学统计学院 60 平滑系数的确定平滑系数的确定 l选择合适的平滑系数是提高预测精度的关键。 l如果序列波动较小,则平滑系数应取小一些,不 同时期数据的权数差别小一些,使预测模型能包 含更多历史数据的信息; l如果序列趋势波动较大,则平滑系数应取得大一 些。这样,可以给近期数据较大的权数,以使预 测模型更好地适序列趋势的变化。 l统计软件中可以根据拟合误差的大小自动筛选最 优的
38、平滑系数值。 中央财经大学统计学院 61 初始预测值的确定初始预测值的确定 l初始预测值的确定 l等于第一个观测值 l等于前k个值的算术平均 l适用场合:单参数(一次)指数平滑适用 于不包含长期趋势和季节成分的平稳时间 序列预测 中央财经大学统计学院 62 案例分析案例分析 l新卫机械厂销售额的单参数指数平滑预测 l分析预测创建模型方法选择“指数平 滑”;根据需要设置“条件”。 l拟合情况与2年的预测值(下页图)。 lspss statistics 估计的=0.689. l拟合数据的mape=12.847%. 中央财经大学统计学院 63 单参数指数平滑的图形结果单参数指数平滑的图形结果 中央财
39、经大学统计学院 64 8.2.2 双参数指数平滑双参数指数平滑 l双参数指数平滑包含两个平滑参数 l适用于包含长期趋势、不包含季节成分的 时间序列预测。 l其基本思想是:首先对序列选定其随时间 变化的线性模型,再通过对序列水平和增 长量分别进行平滑来估计模型中的参数。 中央财经大学统计学院 65 lbfy ttlt , 2 , 1l )(1 ( 11 tttt bfyf 11 )1 ()( tttt bffb 11 yf 1 1 1 m yy b m 双参数指数平滑模型双参数指数平滑模型 l第一个平滑方程得到原序列经趋势调整的平滑值, 第二个平滑方程是对增量进行指数平滑。初始值 取为: 中央财
40、经大学统计学院 66 应用实例应用实例 l利用指数平滑法对我国人均原油产量(单位: 公斤/人)进行预测。 。 l从图形看具有增长 趋势,可以用双参数 指数平滑法进行 预测。 中央财经大学统计学院 67 应用实例应用实例 l软件操作:分析预测创建模型方法选 择“指数平滑”;根据需要设置“条件”(选 择holt线性趋势模型) l由spss软件搜索出的最终平滑系数 、 , 分别为1.00和0.001,预测2007-2010年我国 人均原油产量的预测值分别为: 141.74 142.56 143.37 144.18 中央财经大学统计学院 68 图形图形 中央财经大学统计学院 69 双参数指数平滑预测新
41、卫机械厂双参数指数平滑预测新卫机械厂 的销售收入的销售收入 l估计的=0.018,=0.000. l历史数据mape=9.837%. 中央财经大学统计学院 70 预测图形预测图形 中央财经大学统计学院 71 8.2.3 三参数指数平滑三参数指数平滑 对于包含季节变动(和长期趋势)的时间 序列进行预测常用温特(winter)指数平滑 法。 该法包含三个平滑系数,是依据时间序列 的乘法(或加法)结构模型,在每一步平 滑中将原始时间序列分解成趋势成分和季 节成分并对它们分别进行平滑。 中央财经大学统计学院 72 lltttlt slbfy )( , 2 , 1l )(1 ( 11 tt lt t t
42、 bf s y f 11 )1 ()( tttt bffb lt t t t s f y s )1( 三参数指数平滑模型三参数指数平滑模型 预测公式 (l为季节长度) 中央财经大学统计学院 73 例子:销售额时间序列例子:销售额时间序列 l某企业1990-2002年各月销售额数据。 中央财经大学统计学院 74 example : 销售额时间序列的温 特指数平滑预测 l软件操作:分析预测创建模型方法选择 “指数平滑”; 设置“条件”,选择季节性模型中 的“winter(冬季)加法或乘法模型),这里选的 是乘法模型。 l从图形看拟合效果很好。 中央财经大学统计学院 75 example : 销售额
43、时间序列的温 特指数平滑预测 中央财经大学统计学院 76 8.3 arima模型模型 l 8.2.1 平稳时间序列模型 (arma模型) l 8.2.2 arima模型 arima: autoregressive integrated moving average 中央财经大学统计学院 77 时间序列的平稳性 l随机时间序列分析的一个重要概念是平稳性。 l时间序列平稳性的直观含义是指时间序列没有明 显的长期趋势、循环变动和季节变动。 l 从统计意义上讲,如果序列的一、二阶矩存在, 而且对任意时刻满足:(1)均值为常数;(2)协方差 仅与时间间隔有关,则称该序列为宽平稳时间序 列,也叫广义平稳时
44、间序列。 中央财经大学统计学院 78 非平稳序列 平稳序列 t x t y 时间序列的平稳性(图形)时间序列的平稳性(图形) 中央财经大学统计学院 79 11ttptpt xxxa 是互不相关的序列,且均值为零,方差 为 (即为白噪声序列),一般假定其服从正 态分布。 2 a t a 为零均值平稳时间序列 t x 1 平稳时间序列模型 (1)arma模型的基本形式 lp阶自回归(autoregressive)模型ar(p) 中央财经大学统计学院 80 平稳时间序列模型平稳时间序列模型 滑动平均(moving average)模型-ma(q) 自回归滑动平均(autoregressive and
45、 moving average)模型 arma(p,q) 1111ttpt pttq t q xxxaaa 11tttqt q xaaa 中央财经大学统计学院 81 一个模拟的一个模拟的ar(1)序列序列 1 0.6(0,1) tttt xxaanid 中央财经大学统计学院 82 一个模拟的一个模拟的ma(1)序列序列 1 0.6(0,1) tttt xaaanid 中央财经大学统计学院 83 有均值项的有均值项的arma模型模型 l 对于均值是否为零未知的情况下,建模时 需要给arma模型加上一个均值项。 lar模型: lma模型 larma模型 tptptt axxx )()()( 11
46、qtqttt aaax 11 )( qtqt tptptt aa axxx 11 11 )()()( 中央财经大学统计学院 84 (2) arma模型的识别与估计模型的识别与估计 box-jenkins 的模型识别方法: 根据acf和pacf确定模型的形式。 自相关函数自相关函数(acf)描述时间序列观测值与其 过去的观测值之间的线性相关性。 偏自相关函数偏自相关函数(pacf)描述在给定中间观测 值的条件下时间序列观测值与其过去的观 测值之间的线性相关性。 中央财经大学统计学院 85 模型(序列)模型(序列) ar(p) ma(q) arma(p,q)ar(p) ma(q) arma(p,q
47、) 自相关函数 拖尾 第q个后截尾 拖尾 偏自相关函数 第p个后截尾 拖尾 拖尾 拖尾是指以指数率单调或振荡衰减, 截尾是指从某个开始非常小(不显著非 零)。 box-jenkins 的模型识别方法的模型识别方法 中央财经大学统计学院 86 example:一个零均值时间序列 中央财经大学统计学院 87 下图图中横线为0两倍标准差,可以判断acf和 pacf是否显著非零)。可以看出acf呈拖尾状,pacf 第2个后截尾,可初步断定序列适合ar(2)模型。 一个零均值时间序列的acf和pacf acf拖尾pacf截尾 中央财经大学统计学院 88 模型阶数的确定模型阶数的确定 l对于ar或ma模型
48、,利用acf和pacf判定 模型类型的同时也就初步断定了模型的阶 数。 l 对于arma模型来说,用acf和pacf判 定其阶次有一定的困难。此时可以借助于 下面介绍的信息准则。 中央财经大学统计学院 89 2 ( , )ln( , )2() a aic p qp qpqn 2 ( , )ln( , )()ln() a bic p qp qpqnn 2 ( , ) a p q 模型阶数的确定(模型阶数的确定(arma)* l 实际中常用的准则函数是aic信息准则和bic信息 准则(也称为schwarz信息准则,记为sic),使 准则函数达到极小的是最佳模型。 是对序列拟合arma(p,q)模型
49、的残差 方差,n为观测值的个数。相对于aic信息准则, bic信息准则更多的考虑了模型的参数个数。 中央财经大学统计学院 90 arma模型的参数估计模型的参数估计 对时间序列所适合的arma模型进行初步识 别后,接下来就需要估计出其中的参数, 以便进一步识别和应用模型。 主要的参数估计方法有矩估计法、最小二 乘估计法和极大似然估计法等,一般都由 计算机软件实现,这里不作介绍。 中央财经大学统计学院 91 (3)arma模型的适应性检验模型的适应性检验 模型的适应性检验主要是残差序列的独立 性检验。残差序列可由估计出来的模型计 算得到。如果残差序列的自相关函数不显 著非零,可以认为是独立的。
50、中央财经大学统计学院 92 12 0.420.39 (4.54)(4.17) tttt xxxa 例例1:ar模型模型 l 对前面例子,由spss可以得到参数估计,模型 表达式为: l括号中为参数的t检验值,各参数都是显著的。 中央财经大学统计学院 93 例例1:ar模型模型 l由下图可以看出残差不存在显著的自相关性,可以认为是 独立的,因而模型是适应的。 中央财经大学统计学院 94 例例2:ma模型模型 l根据某化学过程读数拟合arma模型。 中央财经大学统计学院 95 例例2:ma模型模型 acf pacf l根据acf可以尝试ma(2)模型 l根据pacf可以尝试ar(1)模型 中央财经
51、大学统计学院 96 ma(2)模型模型 l模型的正态化的bic=4.969 lr2=0.179 21 302. 0319. 0170.51 tttt aaay 中央财经大学统计学院 97 ma(2)的拟合效果图的拟合效果图 中央财经大学统计学院 98 残差自相关图(残差自相关图(ma(2)模型)模型) l根据残差自相关图判断ma(2)模型是适合的。 中央财经大学统计学院 99 建立建立ar(1)模型的结果模型的结果 l也就是 l模型的正态化的bic=4.91;r2=0.166 l根据bic分析 ar(1)要好一点。 ttt ayy )266.51(419. 0)266.51( 1 ttt ayy 1 419. 075.72 中央财经大学统计学院 100 ar(1)的拟合效果图的拟合效果图 中央财经大学统计学院 101 残差自相关图(残差自相关图(ar(1)模型)模型) l根据残差自相关图判断ar(1)模型是适合的。 中央财经大学统计学院 102 8.2.2 arima模型模型 l 在实际问题中我们常遇到的序列,特别是 反映社会、经济现象的序列,大多数并不 平稳,而是呈现出明显的趋势性或季节性。 l对于有趋势性时间序列通常采用arima模 型进行分析。 l对于有季节性的时间序列可以采用乘积季
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新疆乌鲁木齐市高新区(新市区)2025年下学期初三期末化学试题含解析
- 新乡医学院《普通生物学动物部分》2023-2024学年第二学期期末试卷
- 2025至2031年中国移动式清仓铰龙行业投资前景及策略咨询研究报告
- 兴海县2025年数学五年级第二学期期末检测试题含答案
- 2024届山东省临沭县青云镇中心中学中考联考数学试题含解析
- 广东惠州市惠阳区达标名校2024年中考数学考前最后一卷含解析
- 2024-2025项目安全培训考试试题及完整答案1套
- 2025年新员工岗前安全培训考试试题【名校卷】
- 2025车间安全培训考试试题带解析答案
- 2025年厂里职工安全培训考试试题及答案一套
- 2023年护理知识竞赛题库有答案
- 2021年四川省泸州市中考理综物理试题【含答案、解析】
- 2025上半年江苏省连云港东海县事业单位招聘23人历年自考难、易点模拟试卷(共500题附带答案详解)
- 2025届湖北联投集团有限公司校园招聘299人笔试参考题库附带答案详解
- 超市安全用电培训
- (一模)2025届安徽省“江南十校”高三联考数学试卷(含官方答案)
- 电气火灾警示教育培训考试试题
- 物业安全知识培训内容
- 内科学 尿路感染学习课件
- (2025)驾照C1证考试科目一必考题库及参考答案(包过版)
- 2025年泰兴经济开发区国有企业招聘笔试参考题库含答案解析
评论
0/150
提交评论