![成人高考数学课件[章节讲课]_第1页](http://file2.renrendoc.com/fileroot_temp3/2021-5/30/9a00f326-ac88-4105-a6b4-560015e1c2ac/9a00f326-ac88-4105-a6b4-560015e1c2ac1.gif)
![成人高考数学课件[章节讲课]_第2页](http://file2.renrendoc.com/fileroot_temp3/2021-5/30/9a00f326-ac88-4105-a6b4-560015e1c2ac/9a00f326-ac88-4105-a6b4-560015e1c2ac2.gif)
![成人高考数学课件[章节讲课]_第3页](http://file2.renrendoc.com/fileroot_temp3/2021-5/30/9a00f326-ac88-4105-a6b4-560015e1c2ac/9a00f326-ac88-4105-a6b4-560015e1c2ac3.gif)
![成人高考数学课件[章节讲课]_第4页](http://file2.renrendoc.com/fileroot_temp3/2021-5/30/9a00f326-ac88-4105-a6b4-560015e1c2ac/9a00f326-ac88-4105-a6b4-560015e1c2ac4.gif)
![成人高考数学课件[章节讲课]_第5页](http://file2.renrendoc.com/fileroot_temp3/2021-5/30/9a00f326-ac88-4105-a6b4-560015e1c2ac/9a00f326-ac88-4105-a6b4-560015e1c2ac5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、成人高考高起点数学 复习教程 1章节课件 课程作用 数学复习课数学复习课 旨在帮助学生熟悉并快速掌握中学 数学基础知识、基本技能、基本方法,提高数学思维 能力,包括:空间想象、直觉猜想、归纳抽象、符号 表示、运算求解、演绎证明、体系构建等,以及运用 所学数学知识和方法分析问题和解决问题的能力。 2章节课件 学情分析 1、学生层次参次不齐,个体差异比较明显,在概 念的掌握上缺少系统性、严谨性,故而整个教学环节 应紧扣考试试题结构,通过难易程度适宜、通俗易懂 的教学方法,使学生快速熟悉、了解考点,重点讲解 做题方法、思路及技巧,引导学生积极思考,培养他 们的逻辑思维能力。 2、整个教学环节应紧扣考
2、试试题结构,通过难易 程度适宜、通俗易懂的教学方法,使学生快速熟悉、 了解考点,重点讲解做题方法、思路及技巧,引导学 生积极思考,培养他们的逻辑思维能力。 3章节课件 (一)考试采用闭卷形式,全卷满分为150分,考试时间为120分钟 (二)题型比例: 选择题:约55% (17题,5分/题) 填空题:约10% (4题,4分/题) 解答题:约35% (4题) (三)试题难易比例 较容易题:约40% 中等难度题:约50% 较难题:约10% 考试结构分析 4章节课件 考试结构分析 考试内容考试内容试卷内容比例试卷内容比例复习章节复习章节备注备注 第一部分 代 数 55% 选择1011 填空12 解答2
3、 (一)集合和简易逻辑 (二)函数(二)函数解答题易考点 (三)不等式和不等式组 (四)数列(四)数列解答题易考点 (五)导数(五)导数解答题易考点 第二部分 三角 15% 选择1 填空1 解答1 (一)三角函数及其有关概念 (二)三角函数式的变换(二)三角函数式的变换 解答题易考点 (三)三角函数的图像和性质 (四)解三角形 解答题易考点 第三部分 平面解析几何 20% 选择4 填空12 解答1 (一)平面向量 (二)直线 (三)圆锥曲线 解答题易考点 第四部分 概率与统计初步 10% 选择2 填空1 (一)排列与组合 (二)概率统计初步 教学重点教学难点 5章节课件 教学计划 课时安排课时
4、安排复习内容复习内容复习章节复习章节习题讲解习题讲解 1课时 第一部分 代 数 (一)集合和简易逻辑4、6/5、10/1 (二)函数 3、5、7、9、10、17、18 2、3、6、9、12、16、18 2、3、4、5、6、7、9、10、 13、16、18 (三)不等式和不等式组11、14/15/14 (四)数列(四)数列20/4、22/17、25 (五)导数(五)导数24/20、25/19、22、23 1课时 第二部分 三角 (一)三角函数及其有关概念 8、13 8、11、13 21 (二)三角函数式的变换(二)三角函数式的变换 (三)三角函数的图像和性质 (四)解三角形 22/23/ 总课时
5、:10课时(知识点熟悉及习题讲解3课时+试卷讲解7课时) 6章节课件 教学计划 课时安排课时安排复习内容复习内容复习章节复习章节习题讲解习题讲解 1课时 第三部分 平面解析几何 (一)平面向量16/19/12 (二)直线/ (三)圆锥曲线 2、15、19、25 1、14、24 8、24 第四部分 概率与统计初步 (一)排列与组合1/11、20 (二)概率统计初步12、21/7、17、21/15 7章节课件 1、知识目标 了解:了解:要求考生对所列知识的含义有初步的认识 ,识记有关内容,并能进行直接运用。 理解、掌握、会:理解、掌握、会:要求考生对所列知识的含义有 较深的认识,能够解释、举例或变
6、形、推断,并能运 用知识解决有关问题。 灵活运用:灵活运用:要求考生对所列知识能够综合运用, 并能解决较为复杂的数学问题。 课程目标 8章节课件 2、能力目标 通过采用习题讲解、讲练结合、启发探究、归 纳总结、学以致用等教学方法,使学生在积极活 跃的思维过程中,从“温故”到“理解”到“掌 握”,最终能够基本掌握知识点并熟练运用。 3、情感、态度和价值观 (1)通过讲练结合、自主探究与合作交流的 教学环节的设置,激发学生的学习热情和求知欲 ,充分体现并发挥学生的主体地位; (2)通过数形结合的思想和方法的应用,让 学生感受数学的魅力,培养学生养成灵活的数学 思维习惯和能力。 9章节课件 (一)教
7、法 基于本科目的内容特点和学生的知识掌握层次,依据学 情分析,采用习题讲解、讲练结合、启发探究、归纳总结 、学以致用教学法为主来完成教学: 1、整个教学环节应紧扣考试试题结构,通过难易程度 适宜、通俗易懂的教学方法,激发学生求知欲,调动学生 主体参与的积极性使学生快速熟悉、了解考点; 2、熟悉知识点过程中,紧扣考试大纲要求,查漏补缺 ,通过讲练结合重点讲解做题方法、思路及技巧,启发 探究,引导学生积极思考、归纳总结,培养他们的逻辑思 维能力。 3、在鼓励学生主动思考的同时,不可忽视教师的主导 作用,要教会学生清晰的思维、严谨的推理,并顺利地完 成书面表达 教法、学法分析 10章节课件 (二)学
8、法 在学法上重点注意: 1、让学生利用真题演练,并通过归纳总结,举 一反三,来熟悉考点,培养解题的思维。 2、让学生从问题中质疑、尝试、归纳、总结、 运用,培养学生发现问题、研究问题和分析解决问 题的能力。 11章节课件 课堂设计 1、例题演练:例题讲解,讲练结合 2、引导学生思考:启发探究,查漏补缺 3、知识点掌握:考情点播,应试指导 4、同类题目演练:举一反三,归纳总结 5、课后作业:温故知新,学以致用 6、模拟考试演练:适应环境,达到目标 12章节课件 第一讲 集合和简易逻辑 13章节课件 考试复习大纲 了解集合的意义及表示方法。了解空集、全集、 子集、交集、并集、补集的概念及表示方法,
9、了 解符号 的含义,并能运用这些符号表 示元素与集合,集合与集合的关系; 了解充分条件,必要条件,充分必要条件的概 念。 , 14章节课件 热 点 播 报 l 以填空题、选择题的形式考查集合的交、 并、补运算; l 以集合为载体,考查函数的定义域以及 方程、不等式、曲线的知识交汇问题; l 以考查集合的概念为主,同时考查集合 语言和集合思想的运用。 15章节课件 本章复习提纲本章复习提纲 集合的概念集合的概念 集合的表示法集合的表示法 集合与集合的关系集合与集合的关系 集合与集合的运算集合与集合的运算 简易逻辑简易逻辑 16章节课件 一、集合的概念一、集合的概念 通常把由某些确定的对象组成的整
10、体叫做集合(简称集) 组成集合的对象叫做这个集合的元素 一般采用大写英文字母A,B,C表示集合, 小写英文字母a,b,c 表示集合的元素. 集合的性质:确定性;互异性;无序性 17章节课件 . 元素a是集合A 的元素, 记作aA, 读作a属于A. 元素与集合 元素a不是集合A 的元素, 记作aA, 读作a不属于A. 元素与集合的关系 18章节课件 有限集: 无限集: 空集: 数集: 含有有限个元素的集合 含有无限个元素的集合 元素为数的集合 不含任何元素的集合,记作 一些特殊的集合 19章节课件 实数集: 有理数集: 整数集: 正整数集: 自然数集: (注:自然数包括0,故 0N ,自然数集为
11、非负整数集) 全体正整数组成的集合,用“ N+ ”表示; 全体实数组成的集合,用“ R ”表示; 全体有理数组成的集合,用“ Q ”表示; 全体整数组成的集合,用“ Z ”表示; 全体自然数组成的集合,用“ N ”表示 ; 常用的数集 20章节课件 元素a是集合A的元素, aA,属于 元素a不是集合A的元素, a A,不属于 0 N; 0.6 Z; R; Q; 1 3 0 . ”或“用符号“ ”填空: 21章节课件 例如:“不大于3的自然数”这个集合元素为:0、1、2、3,用 列举法可表示为:0,1,2,3 把集合的元素一一列举出来,写在大括号内,元 素之间用逗号隔开. 列举法: 大括号内画一
12、条竖线,竖线的左侧为集合的代表元 素,竖线的右侧为元素所具有的特征性质. 描述法: 这里的代表元素一般用 x , y 表示,例如:“不大于3的整 数”这个集合的元素无法一一列举,但具有明显特征:1、 均为整数;2、均不大于3。 故用描述法可表示为: | 3,x xxZ 图像法: 22章节课件 ABABBA BA包含;包含于 如果集合B的元素都是集合A的元素,那么称集合A包含集合B, 并把集合B叫做集合A的子集. A B AAA 三、集合与集合的关系 如果集合B是集合A的子集,并且集合A中至少有一个元素不 属于集合B,那么把集合B叫做集合A的真子集. B A B真包含于A 真子集真子集-真包含关
13、系真包含关系 常见几种数集之间的关系:NZQR 23章节课件 . “”与“”用来表示元素与集合之间关系的符号 24章节课件 例 写出集合a,b,c的所有子集,并指出真子集 解: a,b,c的所有子集是: 没有元素的集合:; 只有一个元素的集合:a; b; c; 只有两个元素的集合:a,b; a,c; b,c; 只有三个元素的集合:a,b,c. 其中真子集为: ;a;b;c; a,b;a,c;b,c; 即除了集合a,b,c(自身)之外所有子集 25章节课件 空集 与 的区别与联系 26章节课件 ABAB等 于 27章节课件 一般地,对于两个给定的集合A、B,由集合A、B 的相同元素 所组成的集合
14、叫做A与B的交集,记作AB (读作“A交B”) . BxAxxBA且 集合的交集 四、集合与集合的运算 28章节课件 1、(2002成考题)设集合 ,集合 ,则 等于( ) (A) (B) (C) (D) 2、(2006成考题)设集合 , ,则集合 ( ) (A) (B) (C) (D) 2 , 1A5 , 3 , 2B BA 21,2,3,51,32,5 M=1012 , , ,N= 0,12 3, , MN= 01 ,012, ,101 , ,1012 3 , , , , A B 29章节课件 ABx xAxB或 一般地,对于两个给定的集合A、B,由集合A、B的所有 元素组成的集合叫做集合
15、A与集合B的并集,记作AB (读作 “A并B”) . 集合的并集 30章节课件 1、(2008成考题)设集合 ,集合 , 则 等于( ) (A) (B)1,2,3,4,6 (C) (D) 2、(2003成考题)设集合 ,集合 ,则集合M与集合N的关系为( ) (A) (B) (C) N M (D)M N 2,4,6A 1,2,3B AB 42,4,61,2,3 B D 22 ( , )1Mx y xy 22 ( , )2Nx y xy MN=MMN= 31章节课件 、 . 交集和并集有什么区别?(含义和符号) 1 集合交运算和并运算各自的特点是什么? 2 AB= x | x A 且 x B A
16、B= x | x A 或 x B 交运算是要寻找两个集合相同元素; 并运算是将两个集合中所含的所有的元素进行合并. 32章节课件 1、(2001成考题)设集合 , , ,则 ( ) (A) (B) (C) (D) 1,2,3,4,5M 2,4,6N ()MTN 2,4,5,64,5,6 1,2,3,4,5,6 2,4,6 AT=4,5,6 33章节课件 如果一个集合含有我们所研究的各个集合的全部元素, 在研究过程中,可以将这个集合叫做全集,一般用U来表示, 所研究的各个集合都是这个集合的子集 . 全集 34章节课件 U Ax xUxA且 . 如果集合A是全集U子集,那么,由U中不属于A的所有元
17、 素组成的集合叫做集合A在全集U中的补集. 补集 35章节课件 五、 简易逻辑简易逻辑 条件与结论: 充分条件: 必要条件: 充要条件: 36章节课件 . 条件 p,结论 q” 条件结论 成立 成立 p q p 是 q 的充分条件 成立 成立 p 是 q 的必要条件 p q 成 立 成 立 p q p 是 q 的充要条件 37章节课件 . xyxyxyxy 2020 xxxx ? ? P是是Q的充分不必要条件的充分不必要条件 P是是Q的必要不充分条件的必要不充分条件 38章节课件 1、(2007成考题)若 为实数,设甲: ; 乙: , ,则 ( ) xy、 22 0 xy 0 x 0y (A)
18、甲是乙的必要条件,但不是乙的充分条件; (B)甲是乙的充分条件,但不是乙的必要条件; (C)甲不是乙的充分条件,也不是乙的必要条件; (D)甲是乙的充分必要条件。 D 39章节课件 1、(2003成考题)设甲: 且 ;乙:直线 与直线 平行,则 ( ) (A)甲是乙的必要条件但不是乙的充分条件; (B)甲是乙的充分条件但不是乙的必要条件; (C)甲不是乙的充分条件也不是乙的必要条件; (D)甲是乙的充分必要条件。 B 1k 1b ykxb yx 40章节课件 第二讲 函数 41章节课件 考试复习大纲 1了解(理解)函数的概念,会求一些常见函数的定义域。 2了解函数的单调性和奇偶性的概念,会判断
19、一些常见函数的单调性和奇偶 性。 3理解一次函数、反比例函数的概念,掌握它们的图像和性质,会求他们的 解析式。 4理解二次函数的概念,掌握它们的图像和性质以及函数 与 的图像间的关系;会求二次函数的解析式及最大值或最小值。 能(灵活)运用二次函数的知识解决有关问题。 5了解反函数的意义,会求一些简单函数的反函数。 6理解分数指数幂的概念,掌握有理指数幂的运算性质。掌握指数函数的概 念、图像和性质。 7理解对数的概念,掌握对数函数的运算性质。掌握对数函数的概念、图像 和性质。 )0( 2 acbxxay )0( 2 axay 42章节课件 本章复习提纲本章复习提纲 函数的概念 函数的性质 基本函
20、数图象和性质 43章节课件 一、函数的概念 (1 1)理解函数的有关概念;)理解函数的有关概念; (2 2)理解函数定义域的意义,掌握求函数定义域的一般步)理解函数定义域的意义,掌握求函数定义域的一般步 骤;骤; (3 3)会用配方法、换元法和判别式法等求函数的值域)会用配方法、换元法和判别式法等求函数的值域 44章节课件 通常记为: yf (x),xA 一般地,设 A,B是两个非空的数集,如果按某种 对应法则 f,对于集合A中的每一个元素 ,在集合B 中都有惟一的元素和它对应.这样的对应叫做从A 到B的一个函数. 所有的输入值 x 组成的集合叫做函数yf (x) 的定义域 所有的输出值y 组
21、成的集合叫做函数yf (x) 的值域 45章节课件 1.函数 是多项式函数,则定义域为一切实数;)(xfy 2.函数 是分式函数,则定义域为使分母不为0的所有自变量 的集合; )(xfy x 3.函数 中,含有偶次方根,则定义域为使偶次方根下不为负 的所有自变量 的集合; x )(xfy 4.函数 中,含对数,则定义域为使真数大于零的所有自变量 的集合。 x )(xfy 46章节课件 2函数的性质函数的性质 (1)理解函数的单调性,并会判定及应用; (2)理解函数的奇偶性,并会判定及应用; (3)利用函数的性质灵活解决问题 47章节课件 函数 定义在区间I 上,若对任意 ,都有 ,则称函数 在
22、区间I上是单调增函数;若对 , 都有 ,则称函数 在区间I上是单调减函数。 2121 ,xxIxx且)(xfy )()( 21 xfxf m )(xfy y )( 1 xf )(xfy )()( 21 xfxf 21 xx o )(xfy x 2 x 1 x n )( 2 xf o )(xfy 1 x 2 x )( 1 xf )( 2 xf x y 48章节课件 y x o y y=2x+1 x o y=(x-1)2-1 12 -1 y x y =x3 o y Ox x 1 y 增区间为(,) 增区间为 增区间为 (,) 1,) 减区间为(,1 减区间为 (,0),(0,) 例1: 写出函数的
23、单调区间 49章节课件 取量定大小: 作差定符号: 3. 给出结论. 的结果化积或化完全 平方式的和; 结论一定要指出在那个区间上。 2121, xxxx且 )()( 21 xfxf 50章节课件 2 2yxx 例求出下列函数的最小值 (1) 评述:结合函数图象利用函数的单调性、利 用二次函数(即配方法)求函数值域是两种最 基本的方法,应理解和掌握,并注意格式要求 51章节课件 1.偶函数定义: 如果对于 定义域内的任意一个 , 都有 , 那么函 数 就叫偶函数. 2.奇函数定义: 如果对于 定义域内的任意一个任意一个 , , 都有 那么函数 就叫奇函数. x )(xf )(xf )(xf )
24、()(xfxf ),()(xfxf )(xfx 52章节课件 3.两个性质: 一个函数为奇函数 它的图象关于原点对称。 一个函数为偶函数 它的图象关于y 轴对称。 53章节课件 思考题: 1.已知y=f(x)是偶函数,且在(-,0)上是增函数,则 y=f(x)在(0,)上是 ( ) A.增函数 B.减函数 C.非单调函数 D.单调性不确定 2.已知y=f(x)是奇函数,且在(-,0)上是增函数,则 y=f(x)在(0,)上是 ( ) A.增函数 B.减函数 C.非单调函数 D.单调性不确定 B A 54章节课件 3.基本函数图象和性质 (1)一次函数 (2)二次函数 (3)指数函数 (4)对数
25、函数 (5)反函数 55章节课件 2、正比例函数y=kx(k0)的图象是过点(_), (_)的_。 3、一次函数y=kx+b(k0)的图象是过点(0, b ), (_,0)的_。 1、一次函数的概念:函数y=_(k、b为常 数,k_)叫做一次函数。当b_时,函数 y=_(k_)叫做正比例函数。 kx b = kx 0,0 1,k 一条直线 一条直线 k b 56章节课件 4.正比例函数y=kx(k0)的性质: 当k0时,图象过_象限;y随x的增大而_。 当k0时,y随x的增大而_。 当k0时,y随x的增大而_。 增大 减小 57章节课件 定义:形如 的函数 )0( 2 acbxaxy 已知条件
26、解析式选择表达式 抛物线上的三个点一般式 定点或对称轴、最大(小)值顶点式 抛物线与x轴的两个交点焦点式 )0()( 2 akhxay 1.二次函数的解析式 ) 0)()( 21 axxxxay )0( 2 acbxaxy 58章节课件 _ 对称轴 向下向上开口 性 质 a0 图象 yax2bxc(a0)函数 2二次函数的图象和性质 当_时,y 随 x 的增大而减小 当_时,y 随 x 的增大而增大 增减性 _ 顶点 坐标 性 质 59章节课件 函数 yax2bxc(a0) 顶点 坐标 _ 增减性 当_时,y 随 x 的增大而增大 当_时,y 随 x 的增大而减小 最值 有最_值,即 _ 续表
27、 小 性 质 60章节课件 3.系数 a,b,c 的几何意义 a a,b 右 c (1)开口方向:_的符号决定抛物线的开口方向 (2)当_同号时,对称轴在 y 轴左边;当 a,b 异号时, 对称轴在 y 轴_边 (3)_的符号确定抛物线与 y 轴的交点在正半轴或负半轴 或原点 61章节课件 b24ac ax2 bxc0(a0) 的根的个数 抛物线 yax2bxc (a0)与 x 轴的交点的个数 0两个不相等的实数根_ 0_一个 0 x(1, +)时时,y0. x(0, 1)时时,y0. 在(0,+)上是增函数 O Ox x y y xy a log xy a log 70章节课件 积、商、幂的
28、对数运算法则: 如果a0,且a1,M0,N0有: (1) loglog)(logNMMN aaa (2) logloglogNM N M aaa (3) )(loglogRnMnM a n a 71章节课件 a N N m m a log log log (a0,a1,m0,m1,N0) 1. 对数换底公式: 72章节课件 1loglog)1( ab ba 1logloglog acb cba b m n b a n a m loglog)2( 2. 两个常用的推论: (a,b0且均不为1) 73章节课件 反函数的定义: 一般地,式子y=f(x)表示y是自变量x的函数,设它的定 义域为A,值域
29、为C. 我们从式子y=f(x)中解出x,得到式子 x=(y).如果对于y在C中的任何一个值,通过式子x=(y), x在中都有唯一确定的值和它对应,那么式子x=(y) 就 表示x是自变量y的函数。这样的函数x=(y) 叫做函数y=f(x) 的反函数,记作x=f -1(y), 即 x=(y)=f -1(y) 在函数式x=f -1(y)中,y表示自变量,x表示函数。但在 习惯上,我们一般用x表示自变量,用y表示函数,为此, 我们常常对调x=f -1(y)中的字母x,y,把它改写成y=f -1(x). 函数y=f(x) 反函数的反函数正好是它的本身。 函数y=f(x)的定义域正好是它反函数y=f -1
30、(x)的值域; 反之,函数y=f(x)的值域也是它反函数y=f -1(x)的定义域。 74章节课件 1、反解:y=f(x) )( 1 yfx 3、写定义域:根据原来函数的值域,写出反函数 的定义域. 2、互换:x、y互换位置,得y=f -1(x) 求反函数的步骤: 75章节课件 例1、 求下列函数的反函数 )0(1)3( xxy )(13)1(Rxxy )(1)2( 3 Rxxy )1( 1 32 )4( xRx x x y且且 76章节课件 1 1函数的概念:函数的概念: 考查题型:考查题型:定义域定义域、值域值域、最值最值、解析式解析式, 求值问题求值问题. . 1 1、 (2008200
31、8年)年)函数函数 的定义域为的定义域为 _。 、 (2004(2004年年) )函数函数 的定义域为的定义域为_。 3( )lgf xxx 1 y 1x 77章节课件 3 3、(20062006年)年)对于函数对于函数 ,当,当 时,时, 的取值范围的取值范围 是:是:_ x y3 x0 y 2 yxpx q 4、(2007年)二次函数 的图像经过原点和(-4,0)则该二次函 数的最小值为_ 2 ( )1f xx (2)_f x 5、(2005年)设函数 ,则 78章节课件 6 6、(20082008年)年)二次函数二次函数 的图像经过点(的图像经过点(1 1 ,2 2)和()和(-2-2,
32、4 4),则函数的解析式为),则函数的解析式为_ 2 yxbxc 2 yx 2 x y 2 logyx cosyx 7、 (2008年) 下列函数中,函数值恒大于零的是( ) A. B. C. D. 函数的性质函数的性质:图像图像,奇偶性奇偶性,单调性单调性,反函数反函数 79章节课件 8 8、(2008年)下列函数为奇函数的是:(下列函数为奇函数的是:( ) A. A. B. B. C. C. D. D. 2 3yx 3 x y 3 logyx 3sinyx 2 x y 1 8 1 6 9、(2007年)指数函数 的图像过点() A、(-3, ) B、(-3 , ) C、(-3,-8) D、
33、(-3,-6) 80章节课件 1010、(20072007年)年) ( )( ) A A、3 B3 B、2 C2 C、1 D1 D、 0 0 1212、(20072007年)年)函数函数 的反函数为(的反函数为( ) A、 B、 C、 D、 0 44 1 log 8log 2() 4 2 log1(0)yxx 2 log1(0)yxx 1 2 x y 2 log1(0,1)yxxx 2 log1(0,1)yxxx 81章节课件 第三讲 不等式和不等式组 82章节课件 考试复习大纲 了解不等式的性质。会解一元一次不等式、一 元一次不等式组和可化为一元一次不等式组的不 等式,会解一元二次不等式。会
34、表示不等式或不 等式组的解集。 会解形如 或 的绝对值不等式 +axbcax bc 83章节课件 热 点 播 报 l 以填空题、选择题的形式考查不等式的 性质与运算; l 以不等式为载体,考查函数的定义域以 及集合的表示。 84章节课件 不等式的概念与性质不等式的概念与性质 一元一次不等式及其解法一元一次不等式及其解法 一元一次组不等式及其解法一元一次组不等式及其解法 含有绝对值的不等式含有绝对值的不等式 一元二次不等式及其解法一元二次不等式及其解法 两种常见的不等式及区间两种常见的不等式及区间 85章节课件 86章节课件 . 不等式的性质 由基本性质,我们可以证明得到下面的性质 87章节课件
35、 (20052005年选择第年选择第9 9题)题) 设 ,且 则下列各不等式中,一定成立的是 ( ) A A、 B B、 C C、 D D、 a bR 、 ab 22 ab (0)acbc c 11 ab 0a b B 88章节课件 由不等式的解组成的集合叫做不等式的解集 如果两个不等式的解集相同,那么这两个不等式叫做同解不等式 将一个不等式变为另一个与它同解的不等式的过程叫做同解变形 同解原理 不等式两边都加上(减去)同一个数或同一个整式 不等式两边都乘以(除以)同一个正数 不等式两边都乘以(除以)同一个负数,改变不等号方向 不等式 89章节课件 定义 只有一个未知数(一元),不等式未知数的
36、最高次数为 1(一次)的不等式 解法:经过同解变形,例如去分母,去括号,移项、合并同 类项、不等式两边都除以未知系数(为负数时,改变不等号 方向)等,得到形如 或 , 然后进行求解。(0)axbaxb a 90章节课件 形如 的解集为: 形如 的解集为: 形如 或 的不等式的解 (0)axbaxb a (0)axba b x a (0)axba b x a xb a b a x 91章节课件 定义 由几个一元一次不等式所组成的不等式组,叫做一 解法:分别对组成一元一次不等式组的几个一元一次不等式 进行求解,然后综合几个一元一次不等式的解集,得到一元 一次不等式组的解集。 92章节课件 一元一次
37、方程组的解可以化为以下四种情况 ()mn不妨设 1. 形如 ,此时解集为 2. 形如 ,此时解集为 , , xm xn , , xm xn xn x n m x n m xm 93章节课件 3. 形如 ,此时解集为 4. 形如 ,此时解集为 , , xm xn , , xm xn mxn x n m x n m 94章节课件 (20052005年选择第年选择第2 2题)题) 1 1不等式组不等式组 的解集为(的解集为( ) A A、 B B、 C C、(、(3 3,5 5) D D 、33,55 32 7 4 521 x x (,3)(5,)(,3(5,) C 95章节课件 1、形如 的不等式
38、及其解法 ,xa xa (1) 0a 当 时 xa的解集为 axa xaxaxa 或 的解集为 (2) 0a 当 时 xa 的解集为 0a (3)当 时 xa 的解集为R 0a 当 时xa 的解集为0 x 96章节课件 2、形如 的不等式及其解法 ,axbc axbc (1)、解不等式 相当于解不等式axbc , , axbc caxbc axbc 即 (2)、解不等式 相当于解不等式axbc axbcaxbc 或 97章节课件 B D 98章节课件 定义 只有一个未知数(一元),不等式未知数的最高次数为 2(二次)的不等式 解法:经过同解变形,得到形如 或 ,然后进行求解。 2 0(0)ax
39、bxca 2 0(0)axbxca 注: 的情况可以通过乘以-1,改变不等号 方向转化成 的情形进行求解。 0a 0a 99章节课件 形如的 以及 的一元二次不等式的解集: 2 0(0)axbxca 2 0(0)axbxca 此时一元二次不等式的解与一元二次方程 的判别式 以及一元二次函数 的图象有关 2 0axbxc 2 4bac 2 yaxbxc 100章节课件 0 方程有两个根x1和x2 00 方程无实根 方程ax2+bx+c=0的根 函数y=ax2+bx+c的图像 不等式ax2+bx+c0的解 12 (,)(,)xx 00 (,)(,)xxR 方程有一个根x0 2 4bac 101章节
40、课件 . 二 次 函 数 的图像 一元二次方程 的解 一元二次不等式 的解集 一元二次不等式 的解集 acb4 2 三个二次 000 cbxaxy 2 0 2 cbxax 0 2 cbxax 12 12 , 2 () b xx a xx a b xx 2 21 x 0 y0yy x 0 1 x 2 x 0y x 0 y0y a b 2 无 实 根 12 (,)(,)xx 00 (,)(,)xx 12 (,)x x R 0 2 cbxax 0y 102章节课件 六、两种常见的不等式六、两种常见的不等式 1、形如 的不等式的解法()()0( 0)axb cxd 这种形式的不等式可以根据一元二次方程
41、 的两根情况以及 的系数 的正负来确定其解集。 ()()=0axb cxd 2 x ac 例如 1、 2、 (31)(3)0 xx (5)(32 )0 xx 103章节课件 2、形如 的不等式的解法 () 0( 0) () axb cxd 这种形式的不等式与第一种形式,即 是同解不等式,因此可以转化为 的不 等式进行求解 ()()0( 0)axb cxd ()()0( 0)axb cxd 104章节课件 实数的集合 记作 区间:由数轴上两点间的一切实数所组成的集合叫做区间. 其中,这两个点叫做区间端点. 开区间:满足不等式 的所有实数的集合 axb |x axb ( , )a b记作 闭区间:
42、满足不等式 的所有实数的集合 axb |x axb , a b记作 右(左)开区间:满足不等式 的所有 axb |x axb , )a b ()axb或 ( |)x axb或 ( , )a b或 105章节课件 第 四讲 导 数 106章节课件 1 1了解函数极限的概念,了解函数连续的意义了解函数极限的概念,了解函数连续的意义 2 2理解理解导数的概念及几何意义。导数的概念及几何意义。 3 3会用基本导数公式(会用基本导数公式( (c c为常数)为常数), , , , 的导数),掌握两个函数的和、差、积、的导数),掌握两个函数的和、差、积、 商的求导法则。商的求导法则。 4 4了解(了解(理解
43、理解)极大值、极小值、最大值、最小值的概念,并)极大值、极小值、最大值、最小值的概念,并会会用导数用导数 求多项式函数(求多项式函数(有关函数有关函数)的单调区间、极大值、极小值、及闭区间)的单调区间、极大值、极小值、及闭区间 上的最大值、最小值。上的最大值、最小值。 5 5会会求有关曲线的切线方程,求有关曲线的切线方程,会会用导数求简单实际问题的最大值与最小值。用导数求简单实际问题的最大值与最小值。 () n yx nN yc sinyxsy co x x ye 考试复习大纲 107章节课件 一.知识网络: 导 数 导数的概念 函数的瞬时变化率函数的平均变化率 运动的瞬时速度 曲线的切线的斜
44、率 运动的平均速度 曲线的割线的斜率 导数的运算 基本初等函数的求导 导数的四则运算法则 简单复合函数的导数 导数的应用 函数的单调性研究 函数的极值与最值 导数的运算曲线的切线 变速运动的速度 最优化问题 108章节课件 1.导数的概念: (1)函数在处的增量: )(xfy 0 x)()( 00 xfxxfy (2)平均变化率: 函数从到的平均变化率: )(xfy 0 xxx 0 x xfxxf x y )()( 00 其几何意义:函数图象上过点 和的割线的斜率。 )(,( 00 xfx )(,( 00 xxfxx 109章节课件 (3)函数在处的瞬时变化率: )(xfy 0 xx x xf
45、xxf x y xx )()( limlim 00 00 (4)函数在处的导数: x xfxxf yxf x xx )()( lim)( 00 0 0 0 其本质是函数在处的瞬时变化率。 )(xfy )(xfy 0 xx 0 xx 1.导数的概念: 110章节课件 导数的几何意义是函数在点 处的切线的斜率,且切线的方程为: )(xfy )(,( 00 xfx )( 00 0 xxxfyy 导数的物理意义是以为运动方程的物体在时刻 的瞬时速度。 )(xf 0 x 特别:是瞬时速度; 是瞬时加速度。 )( tsV )( tVa 111章节课件 x x xx xx xx x bkkbkx CC 2
46、1 ).(7 1 ) 1 .(6 3).(5 2).(4 1).(3 ),().(2 )(0. 1 2 23 2 为常数 为常数 2.导数的运算: (1)基本初等函数的导数公式: 112章节课件 xx xx x x ee aa ax e x x aaaaa xx xx aa xx sin).(cos14 cos).(sin13 1 ).(ln12 ).(11 ) 1, 0( ln 1 log 1 ).(log10 ) 1, 0(ln).(9 )().(8 1 且 且 为常数 113章节课件 (2)导数的四则运算法则: (3)简单复合函数的求导法则: )( )()()()( )( )( )()()()()()( )()( )()( )()( 2 xg xgxfxgxf xg xf xgxfxgxfxgxf xCfxCf xgxfxgxf )(),(xguufy )()( xgufyx 求复合函数的导数,关键是分清复合的过程。 114章节课件 3.导数的应用 1 函数的单调性与其导
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年仓储安全管理员考试冲刺:安全检查与隐患排查押题精讲
- 2025年价格鉴证师职业能力水平评价考试(价格鉴证理论与实务)综合试题及答案二
- 2025年重庆英国驾照考试(DrivingTheoryTest中英文对照)冲刺模拟试题及答案
- 新疆维吾尔自治区价格鉴证师考试(价格鉴证理论与实务)模拟题库及答案(2025年)
- 中国橡胶脚蹼项目创业投资方案
- 锻造行业夏季锻造技术提升培训试题及答案
- 塑胶公司试题带答案
- 2025年中国水包水型多彩花纹涂料项目创业计划书
- 2025年山东省寿光市事业单位公开招聘医务工作者考前冲刺模拟带答案
- 2025年农产品安全检测师考试试题及答案分享
- 2024新版离婚协议书模板合集
- 2026年宁波市镇海中学公开招聘事业编制教师46人笔试备考题库及答案解析
- 爆破工国家职业标准(征求意见稿)
- GB 18664-2025呼吸防护装备的选择、使用和维护
- 2025年中国钛杯行业市场全景分析及前景机遇研判报告
- 室内设计方案施工流程
- 10KV电力设备维护技术标准手册
- 中医药膳制作流程与行业标准
- PDCA循环提升胰岛素注射规范率
- 信息安全全员培训课件
- 旧木房线路改造方案(3篇)
评论
0/150
提交评论