




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、学习-好资料统计知识点及常见题型2.1.1 简单随机抽样1总体和样本: 在统计学中 , 把研究对象的全体叫做总体把每个研究对象叫做个体把总体中个体的总数叫做总 体容量为了研究总体 的有关性质,一般从总体中随机抽取一部分: , , ,研究,我们称它为样本其中个体的个数称为样本容量2简单随机抽样,也叫纯随机抽样。就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。特点是: 每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。简单随 机抽样是其它各种抽样形式的基础。通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。 3简单随机抽
2、样常用的方法:(1)抽签法;随机数表法;计算机模拟法;使用统计软件直接抽取。在简单随机抽样的样本容量设计中,主要考虑:总体变异情况;允许误差范围;概率保证程度。 4抽签法:(1) 给调查对象群体中的每一个对象编号;(2) 准备抽签的工具,实施抽签(3) 对样本中的每一个个体进行测量或调查例:请调查你所在的学校的学生做喜欢的体育活动情况。5随机数表法:例:利用随机数表在所在的班级中抽取 10 位同学参加某项活动。2.1.2 系统抽样1系统抽样(等距抽样或机械抽样):把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样本。第一个样本采用简单随机 抽样的办法抽取。k(抽样距离)=
3、n(总体规模)/n(样本规模)前提条件:总体中个体的排列对于研究的变量来说,应是随机的,即不存在某种与研究变量相关的规则分布。可 以在调查允许的条件下,从不同的样本开始抽样,对比几次样本的特点。如果有明显差别,说明样本在总体中的分布 承某种循环性规律,且这种循环和抽样距离重合。2系统抽样,即等距抽样是实际中最为常用的抽样方法之一。因为它对抽样框的要求较低,实施也比较简单。更为重 要的是,如果有某种与调查指标相关的辅助变量可供使用,总体单元按辅助变量的大小顺序排队的话,使用系统抽样 可以大大提高估计精度。2.1.3 分层抽样1分层抽样(类型抽样):先将总体中的所有单位按照某种特征或标志(性别、年
4、龄等)划分成若干类型或层次,然后再在各个类型或层次 中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。两种方法:1 先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。2 先以分层变量将总体划分为若干层,再将各层中的元素按分层的顺序整齐排列,最后用系统抽样的方法抽取 样本。2分层抽样是把异质性较强的总体分成一个个同质性较强的子总体,再抽取不同的子总体中的样本分别代表该子总体, 所有的样本进而代表总体。分层标准:(1) 以调查所要分析和研究的主要变量或相关的变量作为分层的标准。(2) 以保证各层内部同质性强、各层之间异质性强、突出总体内在
5、结构的变量作为分层变量。(3) 以那些有明显分层区分的变量作为分层变量。3分层的比例问题:(1) 按比例分层抽样:根据各种类型或层次中的单位数目占总体单位数目的比重来抽取子样本的方法。(2) 不按比例分层抽样:有的层次在总体中的比重太小,其样本量就会非常少,此时采用该方法,主要是便于对不 同层次的子总体进行专门研究或进行相互比较。如果要用样本资料推断总体时,则需要先对各层的数据资料进行加权 处理,调整样本中各层的比例,使数据恢复到总体中各层实际的比例结构。2.2.2 用样本的数字特征估计总体的数字特征更多精品文档本均值样本标准差标准差标准差学习-好资料1、样 :x =x +x +1 2nl +
6、xn2、 :s =s2=( x -x ) 12+( x -x )2n2+l +( x -x )n23 用样本估计总体时,如果抽样的方法比较合理,那么样本可以反映总体的信息,但从样本得到的信息会有偏差。在 随机抽样中,这种偏差是不可避免的。虽然我们用样本数据得到的分布、均值和标准差并不是总体的真正的分布、均 值和标准差,而只是一个估计,但这种估计是合理的,特别是当样本量很大时,它们确实反映了总体的信息。4 (1)如果把一组数据中的每一个数据都加上或减去同一个共同的常数, 不变(2)如果把一组数据中的每一个数据乘以一个共同的常数 k, 变为原来的 k 倍(3)一组数据中的最大值和最小值对标准差的影
7、响,区间 “去掉一个最高分,去掉一个最低分”中的科学道理2.3.2 两个变量的线性相关1、概念:(1)回归直线方程 (2)回归系数2回归直线方程的应用( x -3 s , x +3 s )的应用;(1) 描述两变量之间的依存关系;利用直线回归方程即可定量描述两个变量间依存的数量关系(2) 利用回归方程进行预测;把预报因子(即自变量 x)代入回归方程对预报量(即因变量 y)进行估计,即 可得到个体 y 值的容许区间。(3) 利用回归方程进行统计控制规定 y 值的变化,通过控制 x 的范围来实现统计控制的目标。如已经得到了 空气中 no 的浓度和汽车流量间的回归方程,即可通过控制汽车流量来控制空气
8、中 no 的浓度。2 24应用直线回归的注意事项(1) 做回归分析要有实际意义;(2) 回归分析前,最好先作出散点图;(3) 回归直线不要外延。题型一选择合适的抽样方法简单随机抽样,也叫纯随机抽样。就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位 系统抽样(等距抽样或机械抽样):把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样本。第一个样本采用简单随机抽样的办法抽取。分层抽样(类型抽样):先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然 后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本
9、合起来构成总体的样本。1现有以下两项调查:某装订厂平均每小时大约装订图书 362 册,要求检验员每小时抽取 40 册图书,检查其装订 质量状况;某市有大型、中型与小型的商店共 1500 家,三者数量之比为 159为了调查全市商店每日零售额情 况,抽取其中 15 家进行调查 完成、这两项调查宜采用的抽样方法依次是( )a.简单随机抽样法,分层抽样法 b.分层抽样法,简单随机抽样法c分层抽样法,系统抽样法 d系统抽样法,分层抽样法2某社区有 400 个家庭,其中高等收入家庭 120 户,中等收入家庭 180 户,低收入家庭 100 户.为了调查社会购买力 的某项指标,要从中抽取一个容量为 100
10、的样本记作;某校高一年级有 12 名女排球运动员,要从中选出 3 人调查学 习负担情况,记作;那么,完成上述 2 项调查应采用的抽样方法是( )a.用随机抽样法,用系统抽样法 b.用分层抽样法,用随机抽样法c.用系统抽样法,用分层抽样法 d.用分层抽样法,用系统抽样法题型二:系统抽样剔除个体数计算当系统抽样中样本总量除以样本容量不是整数时,需要用简单随机抽样法剔除部分个体,剔除个体的数量=样本总 量组距样本容量。例若总体中含有 1650 个个体,现在要采用系统抽样,从中抽取一个容量为 35 的样本,分段时应从总体中随机剔除 个个体,编号后应均分为 段,每段有 个个体5, 35 ,47题型三:分
11、层抽样有关计算更多精品文档100, 200150, 200250, 300150, 300100, 300学习-好资料分层抽样特点:各层抽样比例=总体抽样比例=样本容量总体容量,每层抽取个体数量=该层个体总量抽样比例。经典例题:某校高中部有三个年级,其中高三有学生1000 人,现采用分层抽样法抽取一个容量为 185 的样本,已知在 高一年级抽取了 75 人,高二年级抽取了 60 人,则高中部共有多少学生?练习某单位业务人员、管理人员、后勤服务人员人数之比依次为1532为了了解该单位职员的某种情况,采用 分层抽样方法抽出一个容量为 n 的样本,样本中业务人员人数为 30,则此样本的容量 n 为(
12、 )a.20 b.30 c 40 d 80题型四:频率分布直方图画法步骤作频率分布直方图分布的步骤1 求极差(即一组数据中最大值与最小值的差)2 决定组距与组数,一般样本容量越大组数越多,经常分为 512 组,组距尽量取整。3 将数据分组,通过唱票计算各组的频数4 列频率分布表,根据各组频数计算频率,列出频率分布表画出频率分布直方图,横轴只画最小值与最大值之间部分,纵轴表示 题型五:由频率分布直方图估计众数、平均数、中位数频率组距的值由频率分布直方图估计众数:一般先计算各部分小矩形的面积,找到面积最大的矩形,取该矩形横边中点对应的数即为所求由频率分布直方图估计平均数:一般利用平均数公式x =x
13、 p +x p + +x p 1 1 2 2 nn来计算,其中xn表示第 n 个矩形横边中点对应的数, p 表示第 n 个矩形的面积。n由频率分布直方图估计中位数:就是平分直方图面积且垂直于横轴的直线对应的数。前 n 个小矩形面积不足 0.5时,中位数=下一个矩形横边左端点+不足部分数值 该小矩形面积组距题型六:频率分布表中未知量计算各组频数之和=样本容量,各组频率之和=1,各组频数频率=样本容量数据落在某区间的概率区间包括的各组频率之和经典例题:为了了解小学生的体能情况,抽取了某小学同年级部分学生进行跳绳测试,将所得的数据整理后画出频率 分布直方图(如下图),已知图中从左到右的前三个小组的频
14、率分别是 0.1,0.3,0.4.第一小组的频数是 5.(1) 求第四小组的频率和参加这次测试的学生人数;(2) 在这次测试中,学生跳绳次数的中位数落在第几小组内?(3) 参 加这次测试跳绳次数在 100 次以上为优秀,试估计该校此年级跳绳成绩优秀率是多少?试估计该年级学生平均跳绳次数,中位数、众数频率组距49.5 74.5 99.5 124.5 149.5 次数练习一2005 年降雨量的概率如下表所示:(1)求年降雨量在 )范围内的概率;(2)求年降雨量在 )或 )范围内的概率;(3)求年降雨量不在 )范围内的概率;(4)求年降雨量在 )范围内的概率更多精品文档a学习-好资料年降雨量/mm1
15、00,150)150,200)200,250)250,300)概率012 025016014练习 2某地区的年降水量在下列范围内的概率如下表所示年降水量(单位:mm) 100,150) 150,200) 200,250) 250,300)概率0.12 0.250.16 0.14则年降水量在150,300(mm)范围内的概率为( )a0.41 b0.45 c0.55 d0.67练习 3.(2014 重庆文 17)(本小题满分 13 分.(i)小问 4 分,(ii)小问 4 分,(iii)小问 5 分)7a6a3a2a020 名学生某次数学考试成绩(单位:分)的频率分布直方图如图所示:频率组距成绩
16、(分)50 60 70 80 90 100(i)求频率分布直方图中 的值;50,60)与60,70)中的学生人数;(ii)分别求出成绩落在洞穿高考预测题六(iii)从成绩在50,70)的学生中任选 2 人,求此 2 人的成绩都在60,70)中的概率.题型七:用平均数和方差判断产品质量、成绩好坏、产量高低等平均数和方差(标准差)都是反映数据离散程度的工具。成绩好坏、产量高低等指标首先看平均数越高越好, 当平均数相近或相同时,可以用方差(标准差)来刻画样本的稳定性。题型八:求线性相关的两个变量的回归直线方程,并作出适当预测第一步:作散点图 第二步:求回归方程 第三步:代值计算更多精品文档n nnn
17、2222学习-好资料求线性回归方程系数公式:b =x y -nx y i ii =1 = i =1 x 2 -nx 2i( x -x )( y -y ) i i( x -x ) 2 i, a =y -bx .i =1i =1重要结论正相关则 b0,负相关则 b0,当解释变量增加一个单位时,预报变量相应增加(b0)或减少(b0) b个单位a=y -bx , ( x, y )称为样本点的中心,此点一定在回归直线上。用回归直线方程计算出的 y 值不是真实值,真实值在计算值的左右,可能大,可能小也可能相等。 相关指数 r 用来刻画拟合效果,r 的值越大,拟合效果越好,反之则越差,一般选择 r 值大的模型。 对 r 值理解:相关指数 r20.997 ,说明 x 可以解释 y 的 99.7% 的变化。经典例题:10有 10 名同学高一(x)和高二(y)的数学成绩如下:高一成绩 x 高二成绩 y74767175727168707676737967657
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 化学模拟会考试题及答案
- 2025年老年病学常见疾病诊治试题答案及解析
- 稀土在储能技术中的贡献-洞察及研究
- 纳米尺度下的物理现象-洞察及研究
- 消费升级对糕点面包市场的影响-洞察及研究
- 护士大专自考试题及答案
- 东港教师考试试题及答案
- 2025年随机产生考试试题及答案
- 2025年佛山幼师考试试题及答案
- 2025年深化设计考试试题及答案
- 幼儿园培训返岗汇报
- 岩土钻掘工程学课件
- 北京市2025学年高二(上)第一次普通高中学业水平合格性考试物理试题(原卷版)
- 第九章 统计 单元测试(含解析)-2024-2025学年高一下学期数学人教A版(2019)必修第二册
- T-CDHA 20-2024 T-CAR 20-2024 供热碳排放核算和碳排放责任分摊方法
- 2025上半年信息系统项目管理师(高级软考)综合知识真题及解析
- 呼吸衰竭护理疑难病例讨论
- 熠星创新创业大赛
- 《瑞吉欧课程模式》课件
- 特种作业电工安全培训
- DB37-T 1933-2022 氯碱安全生产技术规范
评论
0/150
提交评论