学校用转化法解决问题的策略_第1页
学校用转化法解决问题的策略_第2页
学校用转化法解决问题的策略_第3页
学校用转化法解决问题的策略_第4页
学校用转化法解决问题的策略_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、用转化法解决问题的策略 (1)教材 苏教版六年级数学教科书 71 页内容。教学目标1 使学生初步学着运用转化的策略分析问题,灵活确定解决问题的思路,根据问 题特点确定具体的转化方法。2在解决实际问题过程中体会转化的含义和应用的手段,感受转化法在解决问题 时的价值。3积累解决问题的经验,增强解决问题时的“转化”意识,提高学好数学的信心。 教学重点 感受“转化”策略的价值,能用“转化”的策略解决问题。教学难点 能用“转化”的策略解决问题。教具准备 多媒体课件教学过程一、课前热身,预伏“转化”1 脑筋急转弯游戏。2送给学生一句话 ( 课件出示 ) :什么是解题 ?解题就是把题目转化为已经解决过的题。

2、 师:这是前苏联一位著名的数学家说的, 这句话道出了数学解题常用的方法转 化。就让我们记住这句话进入今天的学习。( 评析:脑筋急转弯游戏和送给学生的一句话中都蕴含着转化的思想,在创设情境 中,让学生初步感知转化 )二、观察交流,明确转化策略1多媒体出示图片 (像花瓶的图形 ) ,让学生比一比两个图形面积大小。 师:你会求出它的面积吗 ?不会不要紧,当我们遇到难题时,可以先放一放,从简 单的入手。多媒体出示第二幅图。 (例1的左半图 )师:这幅图的面积你会求吗 ?指名说方法,并演示。 师:把原来的图形转化为我们熟悉的长方形,再求面积就简单多了。这就是解决问 题的策略。 ( 板书:解决问题的策略

3、) 2师:用这种策略能解决我们刚才解决不了的问题吗?(多媒体出示例 1 的右半图 )学生动笔画一画,动手剪一剪,也可以和小组内的同学交流自己的想法。 展示学生方法。3师:再让你比较这两幅图形的面积大小,你会吗?其实,这就是我们课本的例 1,虽然是新知,可是通过大家的探索与努力, 已不再是难题。 看一看我们课本是怎样解决的 ?学生自学例 1。多媒体演示过程。师:这就是解决问题的一种重要策略转化( 板书:转化 )( 评析:通过例 1 的教学让学生联系实际感悟转化的含义,体会无论在过去还是现 在,转化都是解决问题的有效方法。其实学生在平时学习数学的过程中,在不自觉中就 经常使用转化策略,这些都是感悟

4、策略的宝贵资源。在学生探索解决问题时,教师根据 数学知识发生形成的过程, 设计具有内在联系和一定梯度的数学问题, 并引导学生通过 自己的积极思维,沿着“问题系列”拾级而上 )三、回顾转化实例,感受转化价值1引导:其实,在以往的学习中,我们早就运用转化这种策略了,只不过当时大 家不知道它的名称而已, 现在你能回顾一下, 我们曾经运用转化的策略解决过哪些数学 问题呢 ?2学生充分列举。3指名汇报。 ( 学生汇报时,用多媒体演示 ) 4小结:转化是一种常见的,也是重要的解决问题的策略。在我们以往的学习中, 早就运用这一策略分析并解决问题了。以后再遇到一个陌生的问题时,你会怎样想?( 评析:引导学生总

5、结回顾在过去的学习中,曾经运用转化的策略解决过的问题, 从策略的角度重新建立相关知识的联系,从而使学生逐步深化对转化策略的认识。设计丰富的实例, 有助于学生更清晰地体会以前解决一个新问题时, 通常都是想办法把它转 化成熟悉的、曾经解决过的问题。从策略的高度引导学生认识相关知识的联系,充分利 用学生已有的知识经验,深化对转化策略的体验 )四、运用策略,体验“转化”师:孩子们, 看来转化这种策略还真是蛮好的, 想动笔试一试, 感受转化的好处吗 ? 出示“试一试”中的算式,提问,这题可以怎样计算 ?点拨:我们还可以借助什么策略来尝试解决问题 ? 当学生说出画图时,课件显示一个正方体。引导学生说出如何

6、在其中分别表示出 1/2 ,1/4 ,1/8 ,1/16 。(多媒体同步演示 ) 引导:看图想一想,可以把这一算式转化成怎样的算式计算 ?可提示:能不能根据空白部分求出涂色部分 ?拓展:计算 1/2+1/4+1/8+1/16+1/32= ?小组讨论小结:利用画图,就可以更加灵活地转化。( 评析:教学时采用小组合作讨论的办法,为更多的同学提供观察和自主探索的空 间。在经历了大量的回顾和讨论之后,学生可以发现:通常我们可以将新的问题转化为 熟悉的、能够解决的问题,把非常规的问题转化为常规的问题等。既充分考虑了学生的 思维发展水平,又便于学生实实在在地掌握转化的策略 )五、解决问题,灵活“转化” 1

7、练一练 1。指导完成“练一练”。 出示方格纸上的两个图形,让学生思考怎样计算右边图形的周长比较简便。 学生自主转化后交流并小结:可以把这个图形转化成长方形计算周长。 提问:如果每个小方格的边长是 1 厘米,右边图形的周长是多少厘米 ?2 练习十四第二题:用分数表示图中的涂色部分。 先独立看图填空,再交流是怎样想到转化的方法的, 以及分别是怎样转化的 ?( 要求 说清旋转、平移的路径 )多媒体着重演示第 3 小题的转化方法。 ( 允许有不同的思路 )3 练习十四。第一题出示问题文字,指导学生理解。 提问:想借助什么策略来解决 ?(转化)怎样才能灵活转化 ?(画图 ) 明确图中每一排的点分别表示每

8、一轮参加比赛的球队, 把两个点合成一个点的过程 表示进行了一场比赛。 单场淘汰制就是每场比赛都要淘汰 1 支球队。然后用多媒体演示 画图过程。提问:如果不画图,有更简便的计算方法吗 ? 可提示:最后赛出冠军时,剩下几支球队 ?说明要淘汰多少支球队 ? 拓展:如果有 64 支球队,产生冠军一共要比赛多少场 ? 提问:这时,借助画图来转化,方便吗 ? 小结:转变角度,也可以更加灵活地转化。所以,我们要随机应变。( 评析:借助直观图,启发学生发现转化的具体方法,为具有不同层次的思维水平 的学生设置了必要的台阶, 也充分反映了化抽象为具体的解题策略。教师问题的设计也 有助于学生体会运用转化的策略灵活变

9、换思考问题的角度,能手找到简洁的解题方法 ) 六,故事启迪,领悟转化技巧 1爱迪生求灯泡容积的故事。先让学生读故事的前半部分,自己想一想,如果是你,你会怎么办 ?2 总结。 小结:解决数学问题时,常常离不开转化。复杂转化为简单,陌生转化为熟悉,未 知转化为已知。( 评析: 通过讲述爱迪生巧用转化的策略来求灯泡的容积这个故事,联系所学知识,也进一步激发了学生的课后探求欲,调动学习的积极性,同时又巩固了转化策略 )总评本课内容是六年级下册第六单元解决问题的策略的第一课时,是在学生 已经学习了画图,列表,列举,倒推,替换和假设等解决问题策略的基础上进行教学的。 转化是一种常见的、极其重要的解决问题的

10、策略, 是指把一个数学问题变更为另一类已 经解决的,或者比较容易解决的问题,从而使原问题得以解决的一种策略,转化的关键 是要能根据具体的问题,确定转化后要实现的目标和具体的转化方法。其实转化的策略对学生来说并不陌生,在以前的学习中已经多次使用过,学生具备一定的基础。掌握转 化策略不仅有利于问题的解决,更有益于思维的发展。本课教学设计中教者立足学生已 有的知识水平,紧紧抓住新旧知识的结合点,引导学生主动参与学习,自主探究、合作 交流,重视培养学生获取新知的能力和获取知识的思维过程。本节教学设计以图形面积问题中的转化为线索,同时涉及体积问题,有序引导学生 回顾并结合课件激发学生再现当时解决问题的过

11、程,凸现了内容的情趣化和生活化;给 足学生自主探索的空间, 在探索的过程中,通过引导学生开展观察、 猜想、操作、推理、 交流等数学活动以培养学生的实践能力、创造能力、合作精神。用转化法解决问题的策略(2)一、直观演示,在强烈对比中引出转化策略1 考考你的眼力。出示图(1),教师问:考考你的眼力,这两个图形的面积相等吗?通过直观观察,学生很容易可以比较出左边图形比右边图形多了一个半圆的面积。出示图(2),提问:同学们再仔细观察一下,这两个图形的面积相等吗 ?(如果有困 难,教师可以启发思考:这两个图形的面积可以利用公式进行计算吗?我们用数方格的方法能求出它们的面积吗?最终引导出两种转化成长方形的

12、思路。 )交流反馈,课件动态演示转化的过程,并板书相应的转化方法:平移、旋转。明确:这两个图形都可以转化成为长5格、宽4格的长方形,所以它们的面积是相等的2 初步感受转化作用。教师:刚才我们都是把这两个图形转化成长方形进行比较的,想一想,为什么要这 样转化呢 ?这样转化有什么好处 ?交流中明确:由于这是两个不规则图形,所以不能直接用公式求出面积,用数方格 的方法又太麻烦了,把它们转化成长方形后,非常容易比较出它们的大小。( 板书:复杂 +简单 )揭示课题: 刚才同学们在解决这个问题时, 其实用到了数学上一种重要的策略 转化。( 板书课题:解决问题的策略转化 ) 心理学思考 有效的数学学习是建立

13、在学生合适的数学现实的基础之上的。六年级学生在以往数学学习过程中都积累了不少“转化”的体验,但这种体验基本上处于无意 识的状态。只有合理呈现学习素材,才能促使学生对转化策略形成清晰的认知。为此, 在课的一开始,便呈现了一个直观性和操作性极强的素材图 (1) ,“考考你的眼力,这 两幅图的面积相等吗 ?”学生很容易直观分出大小。然后再出示图 (2) ,提问:“它们的 面积相等吗 ?”学生有了刚才的学习体验,就会积极开动脑筋,通过平移和旋转把这两 个图形转化为一个长方形。 这样以典型而具有直观性的图形转化为切入口, 既使学习内 容鲜明生动,很快调动起学生积极的学习心向,又能唤醒学生原有认知中的“转

14、化”体 验,让学生不知不觉地开始进一步感悟“转化”策略。二、回顾整理,在复习旧知中感受转化策略1 图形面积、体积方面的应用。(1)回顾有关公式推导过程。启发思考:其实在我们小学阶段的数学学习中,比如说一些图形面积公式、体积公 式的推导,就常常用到转化的策略,你们能想起来吗 ?( 学生先独立思考,然后在小组里讨论。教师巡视,指导交流。 )反馈交流。( 根据学生的回答,课件相机呈现平行四边形、三角形、梯形、圆面积计算公式和 圆柱、圆锥体积计算公式的推导过程。 )(2)再次感受转化策略的作用。回顾:我们在推导平行四边形、三角形和梯形面积计算公式时,是先知道哪个图形 的面积计算公式的 ?接下来我们是如

15、何研究图形之间面积关系的 ?我们又是把哪些图形 转化成平行四边形的 ( 三角形、梯形 )?长方体、圆柱和圆锥的体积计算公式呢 ?感受:在刚才应用转化策略推导出这些公式时, 你们发现它们都有什么共同的特点 ? 明确: 转化前这些问题都是我们面临的新问题, 而我们都是把它转化成曾经学习过 的旧知识。( 板书:新问题 +旧知识 )应用:2. 图形周长、内角和方面的应用。讲述:在求周长、内角和等问题时,我们也要用到转化的策略。想一想:你有什么办法求出树叶和硬币的周长?怎样求出三角形的内角和?明确:化曲为直,把曲线转化成线段来进行测量周长。把三角形的三个内角和转化 为一个平角。练习:计算下面左边两个图形

16、的周长,求出右边图形的内角和。师生交流:刚才我们回顾了一些关于图形中运用转化策略的问题,那对于转化这一策略,现在你有什么样的体会 ?(板书:复杂+简单)3 .数与计算方面的应用。教师:从某种意义上来说,学习数学就是不断学会转化的过程。不仅在图形的世界 里常常应用转化的策略解决问题,而且在数与计算方面也常用到这一策略。想一想:在学习认数和计算时,哪些地方用到过转化的策略呢?先让学生在小组整理回顾,然后师生互动交流。(举例说明:如小数乘法是转化为整数乘法,分数除法是转化为分数乘法来进行计算的,等等。)练习:计算 1/2+1/4+1/3+1/16 。先让学生试算,然后出示图片。提冋:你能运用转化的策

17、略来解决这一冋题吗?引导学生交流算法,明确把加法计算转化为减法计算的过程。(板书:数+形)心理学思考结构性材料的组织和呈现,是课堂教学不同于自然认知的重要标志。 对转化策略的理解不能仅仅依赖直观的演示与形象的操作,更重要的是能让学生亲身经历策略的形成过程,尤其是思维不断发展的过程。因此,教学时应该加强对知识的学习 进行系统分类,以逐步建构学生对转化策略的深层理解。以上教学设计中主要从 3个层面让学生经历转化策略的形成过程:(1)图形面积、体积方面的应用;(2)图形周长、内角和方面的应用;(3)数与计算方面的应用。在转化策略的形成过程中,遵循学生的心 理规律,逐步深入展开:首先,让学生经历直观的

18、单一图形的转化(即考考你的眼力);接着,让学生经历了形与形之间的转化 (即在面积和体积计算公式推导、求周长和内角 和中的应用);然后,又让学生经历了数与计算方面的转化(即数与形的转化)。不同层面的转化策略,思维含量是不一样的,分类让学生经历转化策略的形成过程,符合学生“感知一一表象一一抽象”的认知规律。在学生学习过程中,还针对性地设计了一 些练习题,这些习题的练习,突出了教学的重点,分散了教学的难点,增强了教学的有 效性。三、实践应用,在解决问题中体验转化策略1 关注生活。教师:冈忖我们回顾了以前学习过程中经历转化的一些例子。在我们的实际生活也 常常要用到这一策略。举例:如何用转化的策略求一张

19、纸的厚度,一枚硬币的体积,一个灯泡的容积。(学生探索、交流、汇报。)2 实践应用。出示:有16支足球队参加比赛,比赛以单场淘汰制(即每场比赛淘汰1支球队)进行。数一数,一共要进行多少场比赛后才能产生冠军?如果不画图,有更简便的计算方法吗?引导:单场淘汰制就是一场比赛就会淘汰一支球队,因为最终只有一支球队是冠军,就需要淘汰16仁15支球队,所以比赛的场数也就是161=15(场)。追问:如果是64支球队参加比赛,一共要进行多少场比赛?如果一共有n支球队呢? 比较画图与列式计算的方法,你觉得哪种方法更为简便?之所以简便就是因为我们应用了什么样的策略?心理学思考转化策略在实际生活中应用得非常广泛,但转

20、化的手段和具体方法是多样而灵活的,既与实际问题的内容和特点有关,也与学生的认知结构有关。因此,在 实践应用环节,呈现了一些适合学生探究的生活问题。这些鲜活的素材,一方面调动了 学生学习的积极性,激活了学生的思维需要,丰富了对转化策略的认知,培养了应用转 化策略的能力;另一方面使学生体验到生活与数学的密切联系,感受到生活中处处有数学,增强学生学习数学的信心。四、拓展提升,在总结反思中提升转化策略全课总结:今天我们一起学习了什么知识 ?你最大的收获是什么?(转化的策略可以把复杂的问题变得简单,可以把新的问题变成已经学习过的旧知 识,还可以把数转化为形这也就是转化的价值所在。)反思提升:(出示3句话

21、)“天下难事,必作于易;天下大事,必作于细。”一一思想家老子“如果说我看得比别人更远些,那是因为我站在巨人的肩上。”一一科学家牛顿“什么叫解题?解题就是把题目转化为已经解过的题。”一一众多的数学家围绕这3句话,从今天学习转化策略的角度,你能明白它们的含义吗?用转化法解决问题的策略(3)一、教学例1,揭示“转化”的策略1 .出示师:这是什么图形?(长方形)图中每个小方格的面积都是I平方厘米 如何求出这个长方形的面积 ?(5 X 4=20(平方厘米)2出示师:你能求出这个图形的面积吗 ?怎样思考?(把左边的三角形剪下来,平移到右边去,使原来的图形转化成一个长方形 )演示转化过程。(板书:转化)师:

22、转化成的这 个长方形与原来的图形面积有什么关系 ?(面积相等)(评析:用较为简单的图形过渡,把它转化为面积相等的长方形。孕伏转化的策略, 使学生初步感受转化的作用)3. 出示例1的两幅图,(作业纸)师:这两个图形你们学过吗 ?我们能用已有的面积公式直接计算它们的面积吗?它们的面积相等吗?有什么办法来比较它们面积的大小呢?(1)同桌讨论。(数方格,转化(割补)(2)动手操作?(3)交流自己所用的转化方法,鼓励学生采用多种转化的方法:(如果有学生提出“数方格”,则提示他们进一步想一一想不完整的方格如何处理)重点让学生说一说如何将两个图形转化成已学过面积计算公式的图形。然后课件演示。师:你是怎样进行

23、转化的?(第一幅图:先割下上面的半圆,再将这个半圆向下平移5格,就转化成了 5X 4的长方形了;第二幅图:先把下半部分凸出来的两个半圆割下来,再绕直径的上端旋转180度,补到图形上半部分凹进去的地方,于是这个图形也转化成5X 4的长方形)师:转化后的两个图形的面积什么关系?(都等于20格)师:你怎么想到把图形分割后重新拼合进行转化的?(原图复杂,转化后的图形容易计算面积,而且转化前后图形的面积不变)(板书:复杂-简单)(4)总结评价师小结:刚才我们为了比较两个图形的面积,先把它们转化成长方形,这就是我们 今天要学习的解决问题的策略转化。( 板书:解决问题的策略 )( 评析:转化的目的是为了把困

24、难的问题化为容易的问题,或者把复杂的问题化为 简单的问题,利用动画使转化的过程更加直观,更加便于理解,学生动手操作亲身体验 了转化的好处 )二、回顾转化实例,感受转化的价值1 回顾以往转化的经验。师:其实在我们以前的学习中,已经多次运用过转化的策略,想一想,在哪些地方 用到了这种策略 ?( 可适当提示不同领域的转化 )生可能会说:a、 面积或体积公式的推导过程中用过“形的转化”。(平行四边形-长方形;三 角形、梯形-平行四边形;圆-长方形;圆柱-长方体;圆锥-圆柱)b、计算中用过数的转化(异分母分数加减法-同分母分数加减法;小数乘除法- 整数乘除法;分数除法-分数乘法 )C、简便计算中用过的式

25、的转化。2、初步感受“转化”的价值。师:这些运用转化的策略解决问题的过程有什么共同点 ?(化繁为简、化难为易,化 陌生的新问题为熟悉的问题 )板书:新问题-熟悉的问题 师:以后你再遇到一个陌生的问题时,你会怎样想呢 ?( 评析: 学生曾经多次运用转化的策略学习新知识,引导学生对这些过程进行回忆,从策略的角度重建相关知识的联系,有利于他们理解转化的共同点 )三、运用转化的策略练习,学会一些转化的技巧 师:我们一起来看看下面几个问题,看看能不能用转化策略来解决这些问题。( 要求学生思考如何转化,突出运用转化策略的关键 )( 一) 图形的转化。1 面积计算中的转化。74 页练习十四第 2 题。用分数

26、表示图中的涂色部分,再求涂色部分的面积师:刚才大家用了什么策略?(转化)(评析:等积转化是图形转化中最常见的一种,通过一组题目的练习让学生认识到 转化的前提是对图形组成的分析)2 周长计算中的转化。(1)求下图的周长5米师:谁来指一指表示这个图形的周长包括哪些线段的长度?(学生指)右上方那些线段的长度并不知道,怎么办呢?(把横向的线段移到最上边,纵向的线段移到最右边,就能知道他们的长度的和)课件演示。现在能求出周长吗?师:图形转化时什么没有变 ?(周长没有变)所以这种图形转化属于“等周转化”。(2) 练习:74页练习十四第3题。(作业纸)求下面图形的周长师:第三个图形怎么办?(量)至少要量几条

27、线段的长度呢 ?(评析:等周转化在计算图形的周长时常常用到,练习中让学生思考“求周长时至 少要量几条线段的长度”是一个有价值的问题,能促使学生灵活运用所学的知识)(二)数形转化1 .教学试一试。出示算式:1/2+1/4+1/8+1/16观察算式,你有什么发现?相邻的两个分数有什么关系 ?师:你会算吗?怎样算?(先通分)师:通分就是把异分母分数转化成同分母分数,是数的转化。师:其实,如果将这个算式转化为图形,更为有趣。(逐步出示图形,表示算式)观察图与算式,求这个算式的和就是求图中哪个部分的面积?(求涂色部分的面积)因为用1减去空白部分就是涂色部分,所以算式的和可以转化为1- 1/16。即1/2

28、+1/4+1/8+1/16=1 1/16。2 .延伸:再加上1/32、1/64,学生直接说结果。师:本来算加法,比较繁;转化后,算减法,比较简单。所有的分数加法都能这样 转化吗?这些加数有什么特征?3 创造:同学们,你能创造出一个像这样的算式吗?小结:数形结合有助于思考,可以帮助我们想到合理的转化方法。(三)式的转化。(先加上一个1 师:上面运用数与形的转化得到的结果也可以通过式的转化得到1/16,再减去 1/16)2师:我们以前所学习的简便计算,实际上都是对一些算式进行转化、练习:(1)1.25 - 1/8(2)16 2.54 7.46(3)9- 0.25(4)(51 X 11 X 19)

29、- (57 X 77 X 17)小结:对一些算式进行转化,可以起到简便计算的效果。(四)在解决实际问题的过程中运用转化的策略练习十四第1题。1 数形结合展示比赛过程,得到结果。2(引导学生由“淘汰”进行思考)师:什么叫单场淘汰制?每进行一场比赛就会淘汰一一支球队,每淘汰一支球队就得进行一场比赛。所以比赛的场数与淘汰的球队数相等。因为最终只有一支球队是冠军,也就是一共要淘汰16仁15支球队,所以比赛的场数也就是16 1=15(场)。追问:如果有64支球队按照这样的规则进行比赛,一共要进行多少场比赛?如果一 共有n支球队呢?师:这里所做的是计数对象的转化。(评析:先通过一般的方法让学生得到结果,再

30、应用转化的方法使思路简化,不仅对所得结果深信不疑,而且使思维更具灵活性)四、拓展练习,提升转化的技能1 求阴影部分的面积。(引导学生通过旋转将阴影部分转化成圆的四分之一)2下图中,三角形 ABC是直角三角形,CDEF是正方形。AZ=6厘米,DC=13厘米, 求阴影部分面积的和。(将三角形ADE旋转到三角形GFE的位置,则所求的面积被转化 为直角三角形BEG的面积)(评析:教者在课的末尾安排了两道较难的题目,看似很难,转化后又非常简单。 转化前,山穷水尽疑无路,转化后,柳暗花明又一村,这正是转化策略的魅力所在!)五、全课总结,形成转化意识通过今天的学习,你有什么收获 ?数学家认为:解题就是把新题

31、目转化为已经解过的题。学习数学的过程就是不断转化的过程。将复杂转化为简单,陌生转化为熟悉,抽象 转化为具体,未知转化为已知。所以,掌握转化的策略,对学好数学至关重要。(总评:教者通过精心选择的题组说明了多种多样的转化:包括数的转化(式的转化、运算的转化等)和形的转化(等积转化、等周转化等)。说明了转化策略应用的广泛性, 同时也说明了转化策略实施的方法和所要达到的目的,以及与之协同使用的其他数学思想和数学方法。教学中学生不仅学会了一些转化的方法,也让学生体验到了转化的魅力,增强了学好数学的自信心。例题和习题的量及难度都比较大,如果材料的编排再有所改 进,则可能效果会更好。)用转化法解决问题的策略

32、 (4)教学目标 :1. 教材让学生在直观的情境中想到转化, 并应用图形的平移和旋转知识进行图形的 等积,等周长的变形 .2. 在解决实际问题过程中体会转化的含义和应用的手段, 感受转化在解决这个问题 时的价值。3. 进一步积累解决问题的经验 ,增强解决问题的 转化意识,提高学好数学的信心 教学重点 : 感受“转化”策略的价值,会用“转化”的策略解决问题。教学难点: 会用“转化”的策略解决问题。设计理念: 本节课突出“四性”:即现实性、趣味性、思考性、开放性、交互性,以激发学生的兴趣和思考。 又以培养学生运用所学知识解决实际问题的能力, 培养学生的数学意识, 培养学生的探索精神和创新能力为核心

33、理念而设计的一堂课。 为今后更高层次的创新而 奠定基础。设计思路: 分析本节课,纵观全程,既把平移,旋转运用到图形等积变化的问题中,又蕴涵探 索图形面积公式的转化, 还有计算小数乘法的和分数除法时的转化,还有数量关系之间 的转化等。通过回忆和交流,意识到转化是经常使用的策略,从而主动应用转化的策略 解决问题。基于此,于是采用以下步骤解决。一 .创设情境,感知策略。二 . 合作交流, 探究策略。三 . 拓展运用,提升策略。教师准备: 电子白板课件、白板互动平台 教学过程预设 :一、观察交流,明确转化的策略 分别出示两组图片1、出示第一组:你能比较这两个图形面积的大小吗?生:第2 个图形面积大。师

34、:为什么:生:这两个图形的高和宽是相同的,但第一个图形比第二个图形少了下面半个 圆的面积。2、出示第二组:那这两个图形呢?(让学生猜测。)你是怎么比较的?说给同桌 听一听。学生汇报。汇报时,可能有: (1)数方格的方法,问:你觉得这种方法有怎么样?(麻烦、不准确) (2)变成长方形进行比较。怎样把它们变成长方形的? 第一个图形:上面半圆向下平移 5 格。 第二个图形:下半部分凸出的两个半圆分割出来,以直径的上面端点为中心,分 别按顺时针和逆时针方向旋转 180 度。设计意图:此时学生想象会发生困难,充分利用电子白板的功能能化解难点,突出 了感受“转化”策略这一重点,提高效益。教师在电子白板上将

35、图形平移、 旋转、 拼合,图形的变化过程迅速呈现在学生眼前, 学生清晰直观地感受到了,从而化解了理解上的障碍。师:图形变化的过程中,它们的面积变了吗?现在可以准确判断面积大小吗? 师:你知道你刚才比较时运用了什么策略吗?是用的转化的策略解决问题 教师板书转化,将课题补全(用转化的策略解决问题)3、小结:你为什么要把原来的图形转化成长方形呢?(原来图形复杂,难以比较, 转化后图形简单了便于比较。 )看来,在解决这样的问题时, 转化是一种很巧妙的策略。二、回顾转化实例,感受转化的价值师引导: 在以往的学习中, 我们曾经就运用转化的策略解决过一些问题, 回忆一下。 同桌交流 。学生充分列举,教师媒体

36、配合演示并板书。 预设一:推导平行四边形的面积公式时,把平行四边形转化成长方形。 预设二:推导圆的面积公式时,把圆转化成长方形。预设三:推导圆柱的体积公式时,把圆柱转化成长方体。 预设四:计算小数乘法时转化成整数乘法 预设五:计算异分母分数加减法时,把异分母分数转化成同分母分数。设计意图:图形面积公式探索过程中,转化前后的各种对应关系,是难点也是关 键处。 交互式电子白板提供了多种性能的书写笔, 教师不需要使用键盘而在白板上可以 直接书画和操作,方便了教学。师生一起边找边画边批注,再加上一些简单的书写,既 回忆了这些知识本身的难点, 又示范了如何进行探索图形面积公式的转化, 更凸现了会 用“转

37、化”的策略这一本课重点。另外回忆计算法则的转化时,让学生直接在白板上举 例, 学生获得了一个实践参与的机会, 而且有利于教师清晰明了地了解了学生的思维和 所存在的不足,更有的放矢地进行教学,充分体现了交互、参与的新课程理念。 师: 这些运用转化的策略解决问题的过程有什么共同点? (把新问题转化成熟悉的 或者已经解决过的问题。)转化是一种常用的、也是重要的解决问题的策略。在我们以往的学习中,早就运用 这一策略分析并解决问题了。 以后再遇到一个陌生问题时我们就可以把新问题转化成熟 悉或已经解决的问题。三、分层练习,运用转化的策略师:下面我们就用转化的策略解决一些题目。第一次:空间与图形的领域1、练

38、一练 1(课本练习十四第二题)用分数表示图中的涂色部分设计意图: 通过第一个图形让学生感受到原来的图形的涂色部分无法直接用某一个分 数,而通过白板将图形换色、移动、旋转,发现图中的特殊关系进行转化,可以发现涂 色部分是整个圆的二分之一; 第二个图形进行巩固刚才的转化意识。第三个图形中的涂 色部分是难点, 受思维定势的影响, 学生误认为可以旋转得到 9/16 ,教师要把此作为促 使学生反思的好材料,利用白板进行即时分割、平移、转化,特别是刷新和局部放大、 以及保存痕迹的独特功能,很好地帮助学生思考、辨析错在何处,在错误辨析中加深对 转化策略运用时要保证“变中不变”的本质的理解。 2 、练一练 2

39、 (课本练一练)先出示后,让学生计算左边长方形的周长,右边这 个图形的周长怎样计算呢?指名指周长发现边较多,转化成什么图形可以使计算简便?怎样转化?指名操作设计意图:教师利用电子白板即时变色,突出周长的概念;同时在保留平移前的 痕迹的同时演示平移的过程, 这样避免了由于过程发生变化, 原先的图形脑子里不储存, 缺乏对比说服力不强的弊端刚才我们解决这个问题的策略是什么?(复杂简单)3、练一练 3 (练习十四 第三题 )设计意图在第 2 张图形中, 教师利用电子白板即时变色后再移动,突出周长的概 念;第 3 张图形中,让学生在电子白版上实际操作图形,并利用白板回溯和重现操作过 程和细节的功能,师生

40、一起对学生的操作过程动态和细节在屏幕上评讲、纠正,一目了 然,提高学生的学习兴趣以及参与和交互的积极性;第四张图形的难点是拼合后的周长 概念,教师利用电子白板即时变色,可以方便地解决。第二次 数与代数的领域4、试一试: 1/2+1/4+1/8+1/16这道题我们以前都是通分然后按顺序求和的。 还有不同的转化吗?(可以化小数求和) 你对这种转化有什么看法?(化小数反而麻烦)看右边正方形图。 观察图可以把这一算式转化成什么算式来计算?图中那一部分表 示这几个数的和?空白部分是大正方形的几分之几?能不能根据空白部分求出涂色部 分?小组交流。设计意图:利用数转化为图形来解决问题对学生来说是史无前例的,

41、因此即使算 式和图形静态放在一起,学生也是无从下手的,针对这一难点,利用白板软件中复制副 本、层等的特点将图形和数字组合在一起拖动,巧妙地暗示了其中的联系,学生在轻松 自然学会用“转化”的策略解决问题。小结:要求阴影部分的和可以从空白部分着想,看来用转化的思想解决问题也可以 从反面入手。我们要善于从不同的角度灵活地分析问题,换个角度思考,你就会有全新 的收获。5、练一练 4 (课本练习十四 1 ) 每一排的点分别表示每一轮参加比赛的球队, 把两个点合成一个点的过程表示进行 了一场比赛。淘汰制是指每场比赛都要淘汰 1 支球队。设计意图:运用白板软件中的拉幕功能,让学生根据示意图的逐步提示,领会淘

42、 汰制的含义,通过图示找到被淘汰的队伍有 15 个。)如果 64个球队呢? 100个呢?有更简单的计算方法吗? (师板书:产生冠军, 就是 要淘汰多少支队伍?)为什么 16-1 就是求的比赛的场数?设计意图: 引导学生将这题的解题方法转化为求被淘汰的队伍的个数,只要去掉 一个冠军就是要打的场数。四、故事启迪,领悟转化的技巧1、 数学家爱迪生求灯泡的容积的故事(幻灯片)有一次,爱迪生把一只灯泡交给 他的助手阿普顿, 让他计算一下这只灯泡的容积是多少。 阿普顿是普林顿大学数学系高 材生,又在德国深造了一年,数学素养相当不错。他拿着这只梨形的灯泡,打量了好半 天,又特地找来皮尺, 上下量了尺寸, 画

43、出了各种示意图, 还列出了一道又一道的算式。 一个钟头过去了。爱迪生着急了,跑来问他算出来了没有。“正算到一半。”阿普顿慌 忙回答,豆大的汗珠从他的额角上滚了下来。“才算到一半?”爱迪生十分诧异,走近 一看,哎呀,在阿普顿的面前,好几张白纸上写满了密密麻麻的算式。“何必这么复杂 呢?”爱迪生微笑着说, “你把这只灯泡装满水,再把水倒在量杯里,量杯量出来的水 的体积,就是我们所需要的容积。”“哦! ”阿普顿恍然大悟。 他飞快地跑进实验室, 不到 1 分钟,没有经过任何运算, 就把灯泡的容积准确地求出来了。听了这个故事,你明白了什么道理? 设计意图:利用音频等丰富多彩的媒体,使原本单调的内容变得更

44、为生动有趣2、总结: 多位数学家说过:“什么叫解题?解题就是把题目转化为已经解过的题。 今天我们学习了用转化的策略解决问题,在解决问题时我们要善于运用转化,用好 转化策略,才能正确解题。用转化法解决问题的策略(6)教学内容 苏教版课标本第十二册 71 72页的例I、“试一试”和“练一练”、 练习十四的第1 3题。教学目标:1 使学生初步学会运用转化的策略分析问题,灵活确定解决问题的思路,并能根 据题目的特点选择具体的转化方法,从而有效地解决问题。2 使学生在解决问题的过程中,感受转化策略的应用。3 使学生进一步积累运用转化策略解决问题的经验,感受转化的多样性。增强解 决问题时的“转化”意识,提

45、高学好数学的信心。教学重点:感受“转化”策略的价值,初步掌握转化的方法和技巧。教学难点:灵活运用“转化”的策略解决问题。教学准备:多媒体课件、作业纸。教学过程:一、教学例1,揭示“转化”的策略1 .出示师:这是什么图形?(长方形)图中每个小方格的面积都是I平方厘米 如何求出这个长方形的面积 ?(5 X 4=20(平方厘米)2出示师:你能求出这个图形的面积吗 ?怎样思考?(把左边的三角形剪下来,平移到右边去,使原来的图形转化成一个长方形 )演示转化过程。(板书:转化)师:转化成的这 个长方形与原来的图形面积有什么关系 ?(面积相等)(评析:用较为简单的图形过渡,把它转化为面积相等的长方形。孕伏转

46、化的策略, 使学生初步感受转化的作用)3. 出示例1的两幅图,(作业纸)师:这两个图形你们学过吗 ?我们能用已有的面积公式直接计算它们的面积吗?它们的面积相等吗?有什么办法来比较它们面积的大小呢?(1)同桌讨论。(数方格,转化(割补)(2)动手操作?(3)交流自己所用的转化方法,鼓励学生采用多种转化的方法:(如果有学生提出“数方格”,则提示他们进一步想一一想不完整的方格如何处理)重点让学生说一说如何将两个图形转化成已学过面积计算公式的图形。然后课件演示。师:你是怎样进行转化的?(第一幅图:先割下上面的半圆,再将这个半圆向下平移 5格,就转化成了 5X 4的 长方形了;第二幅图:先把下半部分凸出

47、来的两个半圆割下来,再绕直径的上端旋转180度,补到图形上半部分凹进去的地方,于是这个图形也转化成5X 4的长方形)师:转化后的两个图形的面积什么关系?(都等于20格)师:你怎么想到把图形分割后重新拼合进行转化的?(原图复杂,转化后的图形容易计算面积,而且转化前后图形的面积不变)(板书:复杂-简单)(4)总结评价。师小结:刚才我们为了比较两个图形的面积,先把它们转化成长方形,这就是我们今天要学习的解决问题的策略一一转化。(板书:解决问题的策略)(评析:转化的目的是为了把困难的问题化为容易的问题,或者把复杂的问题化为 简单的问题,利用动画使转化的过程更加直观,更加便于理解,学生动手操作亲身体验

48、了转化的好处)二、回顾转化实例,感受转化的价值1 回顾以往转化的经验。师:其实在我们以前的学习中,已经多次运用过转化的策略,想一想,在哪些地方用到了这种策略?(可适当提示不同领域的转化)生可能会说:a、 面积或体积公式的推导过程中用过“形的转化”(平行四边形-长方形;三角 形、梯形-平行四边形;圆-长方形;圆柱-长方体;圆锥-圆柱 )b、 计算中用过数的转化(异分母分数加减法同分母分数加减法;小数乘除法整数乘除法;分数除法f分数乘法 )C、简便计算中用过的式的转化。2、初步感受“转化”的价值。师:这些运用转化的策略解决问题的过程有什么共同点?(化繁为简、化难为易,化陌生的新问题为熟悉的问题)板

49、书:新问题f熟悉的问题师:以后你再遇到一个陌生的问题时,你会怎样想呢?(评析:学生曾经多次运用转化的策略学习新知识,引导学生对这些过程进行回忆,从策略的角度重建相关知识的联系,有利于他们理解转化的共同点)三、运用转化的策略练习,学会一些转化的技巧师:我们一起来看看下面几个问题,看看能不能用转化策略来解决这些问题。(要求学生思考如何转化,突出运用转化策略的关键)(一)图形的转化。1 面积计算中的转化。74 页练习十四第2题。用分数表示图中的涂色部分,再求涂色部分的面积。师:刚才大家用了什么策略?(转化)(评析:等积转化是图形转化中最常见的一种,通过一组题目的练习让学生认识到 转化的前提是对图形组成的分析)2 周长计算中的转化。(1)求下图的周长。师:谁来指一指表示这个图形的周长包括哪些线段的长度?(学生指)右上方那些线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论