从变换的角度赏析“两角差的余弦公式”之推导_第1页
从变换的角度赏析“两角差的余弦公式”之推导_第2页
从变换的角度赏析“两角差的余弦公式”之推导_第3页
从变换的角度赏析“两角差的余弦公式”之推导_第4页
从变换的角度赏析“两角差的余弦公式”之推导_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、从变换的角度赏析“两角差的余弦公式”之推导近期观看了科幻大片星际穿越,影片中出现了虫洞、黑洞、第五维空间等 一些星际概念,让人感觉宇宙中充满了奇妙的变换.宁宙的研究当然离不开数学,数 学是一切自然科学之王,而数学中也充满了各种奇妙的、令人着迷的变换三角变换 就是其中之一,有些人认为三角学是古老的数学,应该弱化但从现行高中数学教材 来看,仍是对三角学比较重视,确实三角学属于经典数学中的知识,之所以经典有其 原因所在,三角学中的各种变换蕴含了丰富的数学思想,是开启学生数学智慧之门, 引起学生数学探究欲望的良好素材.数学变换方法有着深刻的哲学思想基础,这是因为辩证法告诉我们:任何事物 都不是孤立、静

2、止和一成不变的,而是在不断地发展变化1.由于数学变换方法充 分体现了联系、运动、转化的观点,它对数学教育研究必然是有启发性的.下面以“两角差的余弦公式”推导为例,从变换的视角赏析其生成方式.1公式推导前奏一一两锐角差的余弦公式从学生认知特点的角度出发,从特殊到一般是比较符合学生认知规律的.所以 一般可以考虑从两锐角差的余弦着手,比如cos(45 -30 )=?有各种变换方法可以求出此三角函数值.1.1数学动手实验中的变换明代学者与军事家王守仁说:“知是行之始,行是知之成.”而陶行知老先生 说:“行是知之始,知是行之成 ” “墨辩”提出三种知识:亲知、闻知、说知.亲知 是亲身得来的,就是从“行”

3、中得来的,闻知是从旁人那儿得来的,或由师友口传,或 由书本传达.说知是推想出来的知识.陶老先生拿“行是知之始”来说明知识之来源, 并不是否认闻知和说知,乃是承认亲知为获取一切知识之根本闻知与说知必须安根于亲知里面方能发生效力.古今中外第一流的真知灼见无一不是从“做”中得来,也就是说“教学”要以“做”为主.浙江省高中数学特级教师冯寅老师也曾经强调“动手”与“动脑”图1并重 的观点我们可以尝试让学生在动手操作数学实验的过程中推导出两锐角差的余弦 公式.你能用这两块三角板(如图1)拼出哪些角度呢?(2) 你能用它们拼出15的角吗?(3) 你能否利用所拼出的图形(如图2或如图3)求出cosl5。的值呢

4、?(4) 若将上面的45和30角分别改成锐角a和B,那么会有怎样的结 论?cos( - B )二?1.2物理学做功中的变换正如文首提及的影片星际穿越中诸多的数学变换,物理学中蕴含着丰富的 数学变换.我们可以探寻高中学生熟知的物理知识,挖掘其中“两锐角差余弦公式”.下面以物理学中“做功”为 例尝试让学生挖掘出其中“两锐角差余弦公式”的模型.如图4所示,一个坡度为30的斜坡.已知作用在物体上的力F与水平方向之 间的夹角为45 ,且大小为10N,在力F的作用下,物体沿斜坡运动了 2m,求力F作 用在物体上的功W.学生很快就分析出W=10cosl5 ?s=20cos(45 -30 )二?学生由此做功问

5、题 提炼出图5所示的“两锐角差余弦公式”的模型,其中ZBCD二90 , ZABC二30 , ZDBC二45 , AH丄BD.不妨设 AC二 1,则可以迅速求出 cosl5二6+24.将特殊角替换成一般角便可以得到两锐角差的余弦公式cos(a- B )二cos a cos B +sin a sin B .其间也涉及到一些学生已经学过的三角变换,在推导 新公式的同时,也是对之前三角变换知识的回顾与应用.因此,这种推导方式可以让 学生从实际问题情境中提炼出两锐角差的余弦公式的模型,感知数学知识来源于实 际,运用于实际,自然界万事万物中都蕴含着丰富的数学变换.1.3三角起源弦图中的变换公元3世纪末,亚

6、历山大数学家帕普斯在数学汇编中给出命题2:如图6,设H是以AB为直径的半圆上的一点,CE是半圆在点H 处的切线,CH=HE. CD和EF为AB的垂线,D、F是垂足,则(CD+EF) ?CE二AB?DF.认识“弦图”,从平面儿何中发现两锐角差的余弦公式.可以为学生搭建脚手架:(1)如图7所示,设ZH0F二JZC0H二0,试用a、B 表示ZE0F; (2)不妨设OOOE二 1,试用线段(比)分别表示 sin a cos a sinB、cos B 以及 cos ( a - B);试探究 cos ( a - 0 )与 sin a、cos。、sin P cos B 的关系.以上的推导过程体现了数学是一种

7、文化,在教学过程中适当的融入数学史知识, 让学生寻求数学进步的历史轨迹,领会数学的美学价值,提高学生的数学文化素养. 三角学的历史源远流长,起源于天文观测和历法推算,是儿何问题代数化的典例在 教学过程中,如果融入三角学的历史知识,引导学生了解三角学的发生发展历程,使 学生在探究活动中不仅知其“源”,而且知其所原,则既能使教学充满浓郁的文化气 息,乂能随数学的发展而与时俱进.此外,古埃及天文学家托勒密利用两角和、差的三角关系绘制了现存最早的三 角函数弦表,在天文学和测量计算中有很重要的应用.制作弦表的原理如图8所示. 此原理与人教A版上的方法(如图9所示)有异曲同工之妙.1.4面积中隐含的变换数

8、学的魅力在于他能让人惊叹于数学的各种奇妙的变换,一个普通的图形当中 竟然也能蕴藏着“两锐角差的余弦公式”,如图10所示.通过简单的三角形等积就 可以非常简单的得到“两锐角差的余弦公式” 3.此种变换还有很多,在此不一一举例.这是让学生体验数学魅力的良好素材,新 课程改革大力提倡选修课程的开发与开设,而一线的很多数学教师却苦于没有好的 素材,其实,好的素材“远在天边近在眼前”,我们的教材中就蕴含着丰富的素材.就 以“两角差的余弦公式”为例,我们可以将其推导过程开发成一堂或是一系列选修 课程,作为必修课程的选修化,既能拓展学生的数学视野,也能激发学生数学探究的 热情.也可以将这些素材开发制作成微课

9、,通过翻转课堂的形式让学生进行自主探究 或合作探究,撰写有关两锐角差的余弦公式”的数学小论文,用足教材中的内容, 也迎合高考“源于教材,高于教材”的精神.2角度范围推广一一两任意角差的余 弦公式在学习三角函数的初始,学生首先遇到的问题就是将初中里的特殊角推广到任 意角,如何推广?那便是引进直角坐标系.2.1诱导公式的化角变换笔者觉得在三角的教学中,有些教师往往忽视“诱导公式”的强大功能,只是 单纯让学生记住“奇变偶不变,符号看象限”,会熟练的运用诱导公式解题就可以了.殊不知蕴含于诱导公式中的 数学本质是“化角变换”,将任意角通过诱导公式转化为02八之间的角,再进一步 将刃22刃之间的角转化到0

10、=2之间的角,所以两任意角差的余弦”肯定可以 通过诱导公式转化为“两锐角差的余弦”(轴线角可以单独验证).因此,从诱导公式 化角变换的角度来看,问题可以得到合理的解释.2. 2旋转中的变换人教A版选修42矩阵与变换介绍了旋转变换.如图11所示,在直角坐标 系xOy内,作单位圆0,设a、B角的始边都为Ox、终边分别图11交圆于A、B.这 时,得到两点间的坐标分别为A (cos a, sina ), B(cos P,sinP).山两点间的距离公 式,并整理得I AB 2=2-2 (cos a cos B +sin a sin B ).再以OB为横轴,建立新的Ji 角坐标系“ 0 *,使其单位长与原

11、坐标系相同.在新坐标系中两点坐标为A (cos (a - B ), sin (ci - B ), B (1, 0).同样,由两点间的距离公式,并整理得I AB 12二2- 2cos ( a - B ),由便可得两任意角差的余弦公式4.有心的老师一定还记得人教社全日制普通高中教材中也是运用类似的变换来推导“两任意角差的余弦公式”的.只不过不是旋转坐 标轴,而是旋转点(在此不累述,详见人教社全日制普通高中教材)旋转变换是相对 的,数学中很多问题通过旋转变换可以得到快速解决,比如可以用旋转变换求 12+22+33+n2,运用如图12所示的旋转变换可以很快得到结果.2. 3向量中的变换向量是联系代数、

12、儿何、三角的桥梁,是现代数学中必不可少的工具,它可以 使一些复杂问题简单化,因为它插上了数形结合的翅膀.人教A版教材有意识地将 三角恒等变换置于平面向量之后,并且运用向量数量积运算简洁证明了 “两任意角差的余弦公式”,让人耳LI一新.此证明过程中的叙述看起来很浅显,论 述也不深奥,但它是以运动的、变化的观点来研究数学问题.这种证明方法不但能促 进学生数学认知结构的发展,而且能够帮助学生逐步学会用辩证法的观点来思考问 题、分析问题和解决问题因此,教师可以好好利用向量变换引出来的结果(两任意 角差的余弦公式)帮助学生形成更高层次的数学认知结构.3结束语有些教师认为两角差余弦公式的推导过程不重要,重要的是公式的运用.但我 们从上面各种变换的角度赏析两角差的余弦公式,发现公式推导的各种变换中蕴含着丰富的数学思想若是在公式 推导环节,教师舍得不吝尚时间,浓墨重彩的画上靓丽的一笔,想必会给学生留下“数学是有趣的、是美丽的、是有用的”这样美好而乂深刻的印象.参考文献1 张维忠,宋秀红.略论数学变换方法对数学教育研究的启示J.数学教学研 究,1993(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论