




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 临清三中数学组 编写人:魏延杰 审稿人: 刘桂江 李怀奎32 简单的三角恒等变换【教学目标】会用已学公式进行三角函数式的化简、求值和证明,引导学生推导半角公式,积化和差、和差化积公式(公式不要求记忆),使学生进一步提高运用转化、换元、方程等数学思想解决问题的能力。【教学重点、难点】 教学重点:引导学生以已有公式为依据,以推导半角公式,积化和差、和差化积公式作为基本训练,学习三角变换的内容、思路和方法,体会三角变换的特点,提高推理、运算能力。 教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力。【教学过程】复习引入:复习倍角公式、 先让学生
2、默写三个倍角公式,注意等号两边角的关系,特别注意。既然能用单角表示倍角,那么能否用倍角表示单角呢?半角公式的推导及理解 : 例1、 试以表示解析:我们可以通过二倍角和来做此题(二倍角公式中以a代2a,代a)解:因为,可以得到;因为,可以得到两式相除可以得到点评:以上结果还可以表示为: 并称之为半角公式(不要求记忆),符号由角的象限决定。降倍升幂公式和降幂升倍公式被广泛用于三角函数式的化简、求值、证明。代数式变换往往着眼于式子结构形式的变换,三角恒等变换常常首先寻找式子所包含的各个角之间的联系,并以此为依据选择可以联系他们的适当公式,这是三角式恒等变换的重要特点。变式训练1:求证积化和差、和差化
3、积公式的推导(公式不要求记忆):例2:求证:();()解析:回忆并写出两角和与两角差的正余弦公式,观察公式与所证式子的联系。证明:()因为和是我们所学习过的知识,因此我们从等式右边着手;两式相加得;即;()由()得;设,那么把的值代入式中得点评:在例证明中用到了换元思想,()式是积化和差的形式,()式是和差化积的形式,在后面的练习当中还有六个关于积化和差、和差化积的公式变式训练2:课本p142 2(2)、3(3)例、求函数的周期,最大值和最小值解析:利用三角恒等变换,先把函数式化简,再求相应的值。解: ,所以,所求的周期,最大值为,最小值为点评:例是三角恒等变换在数学中应用的举例,它使三角函数
4、中对函数的性质研究得到延伸,体现了三角变换在化简三角函数式中的作用变式训练3:课本p142 4、(1)(2)(3)探究:求y=asinx+bcosx的周期,最大值和最小值小结:我们要对三角恒等变换过程中体现的换元、逆向使用公式等数学思想方法加深认识,学会灵活运用作业布置:课本p143 习题3.2 a组1、(1)(5) 3 、5 临清三中数学组 编写人:魏延杰 审稿人: 刘桂江 李怀奎32 简单的三角恒等变换(导学案)课前预习学案一、预习目标:回顾复习两角和与差的正弦、余弦和正切公式及二倍角公式,预习简单的三角恒等变换。二、预习内容:1、回顾复习以下公式并填空:cos(+)= cos(-)=si
5、n(+)= sin(-)=tan(+)= tan(-)= sin2= tan2= cos2=2、阅看课本p139-141例1、2、3。三、提出疑惑:同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中疑惑点疑惑内容课内探究学案一、学习目标:会用已学公式进行三角函数式的化简、求值和证明,会推导半角公式,积化和差、和差化积公式(公式不要求记忆),进一步提高运用转化、换元、方程等数学思想解决问题的能力。 学习重点:以已有公式为依据,以推导半角公式,积化和差、和差化积公式作为基本训练,学习三角变换的内容、思路和方法,体会三角变换的特点,提高推理、运算能力。 学习难点:认识三角变换的特点,并
6、能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力。二、学习过程:探究一:半角公式的推导(例1) 请同学们阅看例1,思考以下问题,并进行小组讨论。 1、2与有什么关系?与/2有什么关系?进一步体会二倍角公式和半角公式的应用。 2、半角公式中的符号如何确定? 3、二倍角公式和半角公式有什么联系? 4、代数变换与三角变换有什么不同?探究二:半角公式的推导(例2) 请同学们阅看例2,思考以下问题,并进行小组讨论。 1、两角和与差的正弦、余弦公式两边有什么特点?它们与例2在结构形式上有什么联系? 2、在例2证明过程中,如果不用(1)的结果,如何证明(2)? 3、在例2证明过程中,
7、体现了什么数学思想方法?探究三:三角函数式的变换(例3) 请同学们阅看例1,思考以下问题,并进行小组讨论。1、例3的过程中应用了哪些公式? 2、如何将形如y=asinx+bcosx的函数转化为形如y=asin(x+)的函数?并求y=asinx+bcosx的周期,最大值和最小值 三、反思、总结、归纳: sin/2= cos/2= tan/2= sincos= cossin= coscos= sinsin= sin+sin= sin-sin= cos+cos= cos-cos=四、当堂检测: 课本p143 习题3.2 a组1、(3)(7)2、(1)b组2 课后练习与提高一、选择题:1已知cos(+)cos()=,则cos2sin2的值为( )abcd2在abc中,若sinasinb=cos2,则abc是( )a等边三角形b等腰三角形c不等边三角形d直角三角形3sin+sin=(coscos),且(0,),(0,),
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 酒店仓库管理培训计划
- 辞退违法解除协议书
- 餐厅安全合同协议书
- 遗产分割分配协议书
- 项目内部停工协议书
- 马匹出售繁育协议书
- 设备合资购买协议书
- 项目合作担保协议书
- 风冷电机订购协议书
- 落户委托服务协议书
- GB/T 5271.1-2000信息技术词汇第1部分:基本术语
- GB/T 23703.3-2010知识管理第3部分:组织文化
- BD每月绩效考核表
- GB/T 16535-1996工程陶瓷线热膨胀系数试验方法
- 野生动物驯养繁殖项目可行性研究报告
- GB 14934-2016食品安全国家标准消毒餐(饮)具
- 《新闻学概论》第一章
- CA6140车床拨叉加工工艺及工装设计
- 《血透的抗凝方案》课件
- 企业负责人经营业绩考核专项审计报告格式范本
- DB11T 712-2019 园林绿化工程资料管理规程
评论
0/150
提交评论