




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、北屯中学电子备课教学设计表学科:数学 年级:九年级下册 第二十八单元(章)课题28.1锐角三角函数(1)备课人高凯旋审核人靳振荣授课人陈丽丽课标解读与教材分析课标要求会计算含有这三个特殊锐角的三角函数值的式子,会由一个特殊锐角的三角函数值说出这个角的度数教材分析本章锐角三角函数属于三角学,是数学课程标准中空间与图形领域的重要内容。从数学课程标准看,中学数学把三角学内容分成两个部分,第一部分放在义务教育第三学段,第二部分放在高中阶段。在义务教育第三学段,主要研究锐角三角函数和解直角三角形的内容,本套教科书安排了一章的内容,就是本章锐角三角函数。在高中阶段的三角内容是三角学的主体部分,包括解斜三角
2、形、三角函数、反三角函数和简单的三角方程。无论是从内容上看,还是从思考问题的方法上看,前一部分都是后一部分的重要基础,掌握锐角三角函数的概念和解直角三角形的方法,是学习三角函数和解斜三角形的重要准备。教学目标 1知识与技能 (1)了解锐角三角函数的概念,能够正确应用sinA表示直角三角形中两边的比;记忆30、45、60的正弦的函数值,并会由一个特殊角的三角函数值说出这个角; 2过程与方法 通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生会观察、比较、分析、概括等逻辑思维能力 3情感、态度与价值观 引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习
3、习惯重点正弦、余弦;正切三个三角函数概念及其应用难点使学生知道当锐角固定时,它的对边、邻边与斜边的比值也是固定的这一事实用含有几个字母的符号组sinA表示正弦。教学课时 1课时课前准备三角尺、圆规教学时间2015-3-2教学设计教学增补一、复习引入 教师讲解:杂志上有过这样的一篇报道:始建于1350年的意大利比萨斜塔落成时就已经倾斜1972年比萨发生地震,这座高54.5m的斜塔大幅度摇摆22分之分,仍巍然屹立可是,塔顶中心点偏离垂直中心线的距离已由落成时的2.1m增加至5.2m,而且还以每年倾斜1cm的速度继续增加,随时都有倒塌的危险为此,意大利当局从1990年起对斜塔进行维修纠偏,2001年
4、竣工,使顶中心点偏离垂直中心线的距离比纠偏前减少了43.8cm 根据上面的这段报道中,“塔顶中心点偏离垂直中心线的距离已由落成时的2.1m增加至5.2m,”这句话你是怎样理解的,它能用来描述比萨斜塔的倾斜程度吗?这个问题涉及到锐角三角函数的知识学过本章之后,你就可以轻松地解答这个问题了!二、 探究新知 (1)问题的引入 教师讲解:为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行喷灌现测得斜坡与水平面所成角的度数是30,为使出水口的高度为35m,那么需要准备多长的水管? 教师提出问题:怎样将上述实际问题用数学语言表达,要求学生写在纸上,互相讨论
5、,看谁写得最合理,然后由教师总结教师总结:这个问题可以归纳为,在RtABC中,C=90,A=30,BC=35m,求AB(课本图281-1)根据“在直角三角形中,30角所对的边等于斜边的一半”,即 可得AB=2BC=70m,也就是说,需要准备70m长的水管 教师更换问题的条件后提出新问题:在上面的问题中,如果使出水口的高度为50m,那么需要准备多长的水管?要求学生在解决新问题时寻找解决这两个问题的共同点 教师引导学生得出这样的结论:在上面求AB(所需水管的长度)的过程中,虽然问题条件改变了,但我们所用的定理是一样的:在一个直角三角形中,如果一个锐角等于30,那么不管三角形的大小如何,这个角的对边
6、与斜边的比值都等于也是说,只要山坡的坡度是30这个条件不变,那么斜边与对边的比值不变教师提出第2个问题:既然直角三角形中,30角的斜边与对边的比值不变,那么其他角度的对边与斜边的比值是否也不会变呢?我们再换一个解试一试如课本图281-2,在RtABC中,C=90,A=45,A对边与斜边的比值是一个定值吗?如果是,是多少? 教师要求学生自己计算,得出结论,然后再由教师总结:在RtABC中,C=90由于A=45,所以RtABC是等腰直角三角形,由勾股定理得AB2=AC2+BC2=2BC2,AB=BC 因此 =, 即在直角三角形中,当一个锐角等于45时,不管这个直角三角形的大小如何,这个角的对边与斜
7、边的比都等于 教师再将问题提升到更高一个层次:从上面这两个问题的结论中可知,在一个RtABC中,C=90,当A=30时,A的对边与斜边的比都等于,是一个固定值;当A=45时,A的对边与斜边的比都等于,也是一个固定值这就引发我们产生这样一个疑问:当A取其他一定度数的锐角时,它的对边与斜边的比是否也是一个固定值? 教师直接告诉学生,这个问题的回答是肯定的,并边板书,边与学生共同探究证明方法这为问题可以转化为以下数学语言:任意画RtABC和RtABC(课本图281-3),使得C=C=90,A=A=a,那么有什么关系 在课本图281-3中,由于C=C=90,A=A=a,所以RtABCRtABC,即 这
8、就是说,在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,A的对边与斜边的比都是一个固定值 (二)正弦函数概念的提出 教师讲解:在日常生活中和数学活动中上面所得出的结论是非常有用的为了引用这个结论时叙述方便,数学家作出了如下规定:如课本图281-4,在RtBC中,C=90,我们把锐角A的对边与斜边的比叫做A的正弦,记作sinA,即sinA= = 在课本图281-4中,A的对边记作a,B的对边记作b,C的对边记作c 例如,当A=30时,我们有sinA=sin30=; 当A=45时,我们有sinA=sin45= (三)正弦函数的简单应用 教师讲解课本第79页例题1 例1 如课本图281-
9、5,在RtABC中,C=90,求sinA和sinB的值 教师对题目进行分析:求sinA就是要确定A的对边与斜边的比;求sinB就是要确定B的对边与斜边的比我们已经知道了A对边的值,所以解题时应先求斜边的高 解:如课本图285-1(1),在RtABC中, AB=5 因此 sinA=,sinB= 如课本图285-1(2),在RtABC中, sinA=,AC=12 因此,sinB= 三、随堂练习 做课本第79页练习 四、课时总结 在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,A的对边与斜边的比都是一个固定值 在RtABC中,C=90,我们把锐角A的对边与斜边的比叫做A的正弦,记作sinA,授课人根据学情、班情再备课正弦的表示:SinA、sin、sin1、sinABC、sin56.补充:1. 在RtABC中,CDAB,如果AC=3,BC=2,求sinACD.2. 在ABC中,D为AC边上的一点,DEBC,若AD=2DC,AB=4DE,求sinB的值.板书设计28.1锐角三角数(1)正弦定义:问题(1)问题(2)应用举例:作业布置做课本第85页习题281复习巩固第1题、第2题(只做与正弦函数有关的部分)教学反思 课前给学生展示比萨斜塔的夹角,借助现代技术将现实问题抽象到平面几何图形中去,激发学生发现数学的能力,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 水厂土建工程施工进度管理方案
- 光伏生产班组绩效考核方案
- 教师个人教学与科研月工作总结范文
- 隧道工程成本预算与控制管理方案
- 科技金融推动生产力革新路径研究
- 优化体育赛事服务管理的策略及实施路径
- 水电站增效扩容改造工程可行性研究报告
- 采石场环境保护水土保持保证体系措施
- 2025银行客户维护心得体会
- 港口码头扬尘防治措施
- 皮肤科常见疾病瘙痒症护理的课件
- 2023年湖北黄石新港(物流)工业园区总工会协理员招考聘用笔试历年难易错点考题荟萃附带答案详解
- 电力电子技术(第3版)PPT全套完整教学课件
- 招投标结果申诉函
- 内部准驾证管理办法
- dd5e人物卡可填充格式角色卡夜版
- 电厂集控全能运行值班员应知应会(终结版)
- 南通城市介绍家乡介绍PPT
- 低慢小非法干扰事件应急处置专项预案
- GB/T 40924-2021单板滑雪靴滑雪板固定器接口
- GB/T 17193-1997电气安装用超重荷型刚性钢导管
评论
0/150
提交评论