七年级上数学暑期讲义_第1页
七年级上数学暑期讲义_第2页
七年级上数学暑期讲义_第3页
七年级上数学暑期讲义_第4页
七年级上数学暑期讲义_第5页
已阅读5页,还剩79页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第一章 有理数知识框架:第一课 正数与负数正数与负数、有理数的分类定义:一般地,对于具有相反意义的量,我们可以把其中一种意义的量规定为正的,用过去学过的数表示;把与它意义相反的量规定为负,用过去学过的数(零除外)前面放上一个“-”(读作负)号表示。注意:零既不是正数,也不是负数。为了表示具有相反意义的量,上面我们引进了-5,-2,-237,-07,-20等,像这样的数是一种新数,叫做负数。过去学过的那些数(零除外),如3,10,500,12,等,叫做正数。正数前面也可以放上一个“+”(读作“正”)号。如3可以写成+3。一般情况下,正数前面的“+”号省略不写。有理数的分类: 例1.在下列横线上填

2、上适当的词,使前后构成意义相反的量: (1)收入1300元, 800元;(2) 80米,下降64米; (3)向北前进30米, 50米;(4)高出海平面10米,_海平面25米; (5)减少5千克,_20千克;(6)_3万吨,增产2万吨。例2.在5分钟内背过5个单词为过关,超过的记为正。现在小明的记录为3,小华的记录为0,小军的记录为2,小丽的记录为+1,则:(1)四个人中有几个人过关?(2)他们分别背过了几个单词?(3)记录中的四个数字统属哪一类有理数?例3.把下列各数填入表示它所在的数集的圈内:5,1.2,50,0.618,0,1.01001,5%,0.3 负分数集合 非负整数集合 正有理数集

3、合 整数集合课堂同步:一、填空题:1.气温升高1记作,那么气温下降6记作_2.在知识竞赛中,如果10分表示加10分,那么_表示扣20分;3.如果物体向右移动10m记作m的话,那么m表示物体_,“0”表示物体_4.仪表指针顺时针旋转900记作-900,那么逆时针旋转800记作_;5.在数-100, 70.8, -7, , -3.8, 0, , , 中,不是分数的是_;不是小数的是_;不是有理数的是 6.北京与纽约的时差为-13h,北京时间是10月16日16:00,纽约时间是_7.把下列各数填在相应的大括号里1,正整数集合 负整数集合 正分数集合 负分数集合( )8.如果水位下降3m记作m,那么水

4、位上升4m,记作( ) a、1m b、7m c、4m d、m9.下列有关“0”的数选中,错误的是( )a、不是正数,也不是负数 b、不是有理数,是整数c、是整数,也是有理数 d、不是负数,是有理数10.下列有正数和负数表示相反意义的量,其中正确的是( ) a. 一天凌晨的气温是50c,中午比凌晨上升100c,所以中午的气温是+100c b. 如果生产成本增加12%,记作+12%,那么12%表示生产成本降低12%c. 如果+5.2米表示比海平面高5.2米,那么6米表示比海平面低6米d. 如果收入增加10元记作+10元,那么8表示支出减少8元11.欢欢发烧了,妈妈带她去看医生,结果测量出体温是39

5、.2 ,.用了退烧药后,以每15分钟下降0.2 的速度退烧,则两小时后,欢欢的体温是( ) 。 a.38.2 b.37.2 c.38.6 d.37.612.下表记录的是珠江今年某一周内的水位变化情况,上周末(星期六)的水位已达到警戒水位33米。(正号表示水位比前一天上升,负号表示水位比前一天下降)星期日一二三四五六水位变化(米)+0.2+0.8-0.4+0.2+0.3-0.5-0.2(1)本周哪一天河流的水位最高?哪一天河流的水位最低?位于警戒水位之上还是之下?(2)与上周末相比,本周末河流的水位是上升了还是下降了? 课后练习:一、填空题:1.、和统称为整数;和统称为分数;和统称为有理数;和统

6、称为非负数;和统称为非正数;和统称为非正整数;和统称为非负整数;有限小数和无限循环小数可看作;无限不循环小数称为。2.零下15,表示为_,比o低4的温度是_3.地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,其中最高处为_地,最低处为_地4.某天中午11时的温度是11,早晨6时气温比中午低7,则早晨温度为_,若早晨6时气温比中午低13,则早晨温度为_5.“甲比乙大-3岁”表示的意义是_6.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_,-4万元表示_7.某天上午的温度是5,中午又上升了3,下午由于冷空气南下,到夜间又下降了9,则这天夜间的温度

7、是 。8.已知下列各数:,3.14,+3065,0,-239则正数有_;负数有_9.把下列各数分别填入相应的大括号内:自然数集合 ;整数集合 ;正分数集合 ;非正数集合 ;有理数集合 ;10.观察下面依次排列的一列数,它的排列有什么规律?请接着写出后面的3个数,你能说出第10个数,第200个数,第201个数是什么吗?(1)1,-1,1,-1,1,-1,1,-l,_,_,_,;(2)1,-2,3,-4,5,-6,7,-8,_,_,_,;(3)- 1,_,_,_,二、选择题:11.既是分数又是正数的是( ) a.+2 b.- c.0 d.2.312.在0,1,-2,-3.5这四个数中,是负整数的是

8、( ) a.0 b.1 c.-2 d.-3.513.向东行进-50m表示的意义是( ) a向东行进50m b向北行进50m c向南行进50md向西行进50m14.文具店、书店和玩具店依次座落在一条东西走向的大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了30米,接着又向东走了50米,此时小明的位置在( ) a.文具店 b.玩具店 c.文具店西30米处 d.玩具店西50米处15.下列结论中正确的是( )a0既是正数,又是负数bo是最小的正数c0是最大的负数 d0既不是正数,也不是负数16.大于3.5,小于2.5的整数共有( )个. a.6 b.5 c.4 d

9、.317.给出下列各数:-3,0,+5,+3.1,2004,+2008,其中是负数的有( ) a2个 b3个 c4个d5个18.最小的正整数是( )a.1 b.0 c.1 d.219.下列说法中正确的是( ) a.有最小的负整数,有最大的正整数 b.有最小的负数,没有最大的正数 c.有最大的负数,没有最小的正数 d.没有最大的有理数和最小的有理数20.在下列四组数(1)-3,2.3,;(2),0,;(3),0.3,7;(4) ,2中,三个数都不是负数的组是( )a.(1)(2) b.(2)(4) c.(3)(4) d.(2)(3)(4)21.在-7,0,-3,+9100,-0.27中,负数有(

10、 )a0个 b1个 c2个 d3个22.下列说法正确的是( )a、整数就是正整数和负整数 b、分数包括正分数、负分数c、正有理数和负有理数组成全体有理数 d、一个数不是正数就是负数。23.下列一定是有理数的是( )a. b.a c.a+2 d.24.室内温度是180c,室外温度是30c, 室内温度比室外温度高( ) a.210c b.150c c.150c d.210c25.一种零件的直径尺寸在图纸上是30(单位:mm),它表示这种零件的标准尺寸是30mm,加工要求尺寸最大不超过( ) a.0.03 b.0.02 c.30.03 d.29.98三、综合题:26.下列各数中,哪些是正数?哪些是负

11、数?+8,-25,68,o,-3.14,0.001,-889正数:负数:27.a地海拔高度是40m,b地比a地高20m ,c地又比b地高30m,试用正数或负数表示b、c两地的海拔高度。28.某水泥厂计划每月生产水泥1000t ,一月份实际生产了950t ,二月份实际生产了1000t ,三月份实际生产了1100t ,用正数和负数表示每月超额完成计划的吨数各是多少?30.某一出租车一天下午以鼓楼为出发地在东西方向营运,向东为正,向西为负,行车里程(单位:km)依先后次序记录如下:+9、3、5、+4、8、+6、3、6、4、+10.(1)将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼的什么方

12、向?(2)若每千米的价格为2.4元,司机一个下午的营业额是多少?31.每四年一届的世届杯足球赛,共有32 支球队分成 8 个小组进行小组赛,每小组的前两名进入16 强。比赛的规则是:(1)胜一场得 3 分 ,平一场得 1 分 ,负一场得 0 分;(2)根据积分的多少确定名次,若积分相同,则比净胜球的多少确定。假如下表是某一小组的比赛结果,请填写下表,确定出四个队的小组名次。巴 西英 国韩 国南 非积 分净 胜 球名 次巴 西-4 10 12 2英 国1 4-1 02 2韩 国1 00 1-2 2南 非2 22 22 2-能力提高:2.下列各数5,0,m(m是有理数)中,一定是负数的有( )a.

13、1个 b.2个 c.3个 d.4个3.下列说法正确的是( )a.“向东5米”与“向西10米”不是相反意义的量。b.如果气球上升25米记作+25米,那么15米的意义就是下降15米。c.如果气温下降60c,记作60c那么+80c的意义就是下降零上80c d.若将高1米设为标准0,高.1.20米记作+.20,那么0.05米所表示的高是0.95米。4.气温下降40c,改成使用正数的说法是 5.观察下面的一列数:,请你找出其中排列的规律,并按此规律填空第9个数是_ 6.如图,一只甲虫在55的方格(每小格边长为1)上沿着网格线运动。它从a处出发去看望b、c、d处的其它甲虫,规定:向上向右走为正,向下向左走

14、为负。如果从a到b记为:ab(1,4),从b到a记为:ab(1,4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中:(1)ac( , ),bc( , ),c (1, ); (2)若这只甲虫的行走路线为abcd,请计算该甲虫走过的路程;(3)若这只甲虫从a处去甲虫p处的行走路线依次为(2,2),(2,1),(2,3),(1,2),请在图中标出p的位置。课堂小练01正数与负数 姓名:1.如果汽车向东行驶30米,记作米,那么米表示( ) a、向东行驶50米 b、向西行驶50米 c、向南行驶50米 d、向北行驶50米2.下列说法正确的是( )a、最小的正整数是零 b、自然数一定是正整数c、

15、负数中没有最大的数 d、自数数包括了整数3.下列说法中,正确的个数有( ) ;1.3不是整数;0是最小的有理数;那负有理数不包括零 正整数,负整数统称为有理数a、1 个 b、2个 c、3个 d、4个4.李华把向北移动记作“+”,向南移动记作“”,下列说法正确的是( )a.5米表示向北移动了5米 b.+5米表示向南移动了5米c.向北移动5米表示向南移动5米 d.向南移动5米,也可记作向南移动5米5.下列说法错误的是( ) a.有理数是指整数、分数、正有理数、零、负有理数这五类数b.一个有理数不是整数就是分数c.正有理数分为正整数和正分数d.负整数、负分数统称为负有理数6.甲潜水员在海平面m作业,

16、乙在海平面m作业,_潜水员离海平面较近;7.下列各数:-2,5,0.63,0,7,-o.05,-6,9,1其中正数有_个,负数有_个,正分数有_个,负分数有_个,自然数有_个,整数有_个 是负数而不是整数的数是_ 既不是分数,也不是正数的是:_ 最大的负整数是:_,最小的正整数是:_8.一物体可以左右移动,设向右为正,问:(1) 向左移动12米应记作什么? (2)“记作8米”表明什么?9.检修小组从a地出发,在东西路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中行驶记录时如下(单位:km)4, +7, 9, +8, +6, 4, 3.(1)求收工时距a地多远?(2)在哪次记录时距a地最

17、远?(3)若每千米耗油0.3升,问从出发到收工耗油多少升?第二课 数轴 相反数 绝对值数轴:规定了原点、正方向和单位长度的直线叫做数轴数轴三要素:原点、正方向、单位长度数轴的画法:在平面内画一条直线; 标出原点; 用一定的长度作为单位长度,左边和右边标出数字数轴上的点的意义:一般地,设a是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a个单位长度;表示a的点在原点的左边,与原点的距离是a个单位长度。注意:任何一个有理数都可以用数轴上的点来表示。相反数:代数概念:只有符号不同的两个数称互为相反数。0的相反数是0.几何意义:在数轴上,表示互为相反数的两个数分别位于原点两侧,且与原点的距离

18、相等。 说明:(1)相反数是指只有符号不同的两个数;(2)相反数是成对出现的,不能单独存在,因而不能说“-6是相反数”。特别强调的是0的相反数为0,因为0既不是正数,也不是负数,它到原点的距离就是0,这是相反数等于本身的唯一的数。 规定:在任何一个数的前面添上一个+号,表示这个数本身;添上一个-号,就表示这个数的相反数. 一般地,数的相反数是,其中可是正数和负数和0 注意:a不一定是正数,同样a也不一定是负数。“-”号的三种主要意义: 性质符号:写在一个数值的前面,表示这个数是负数. 比如,-5表示“负5”这个负数,在这里的“-”号就是表示负数的一种符号,它表明“-5”的性质是负数. 相反数符

19、号:表示一个数的相反数时,我们常在这个数的前面添上“-”号. 运算符号:绝对值:定义:我们把在数轴上表示数a的点与原点的距离叫做数a的绝对值)。记作|a|。绝对值的一般规律: 一个正数的绝对值是它本身; 0的绝对值是0; 一个负数的绝对值是它的相反数。即:若a0,则|a|=a; 若a0,则|a|=a; 或写成:。 若a=0,则|a|=0; 绝对值的非负性 由绝对值的定义可知:不论有理数a取何值,它的绝对值总是正数或0(通常也称非负数),绝对值具有非负性,即|a|0。 两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小。有理数大小比较步骤: 先分别求出它们的绝对值; 比较绝对

20、值的大小; 比较负数大小:我们可以得到有理数大小比较的一般法则:(1) 负数小于0,0小于正数,负数小于正数;(2) 两个正数,应用已有的方法比较;(3) 两个负数,绝对值大的反而小.例1.下图中哪一个表示数轴?不是数轴的请说出原因例2.画一个数轴,并在数轴上画出表示下列各数的点:1,-5,-2.5,0例3.指出数轴上a,b,c,d,e各点分别表示什么数例4(1)在数轴上到原点距离为3个单位长度的点有几个?它们表示的数是什么?(2)如果在数轴上点a所对应的数是2,那么在数轴上与点a相距3个单位长度的点所表示的数有几个?分别是多少?例5.分别说出各是什么数的相反数。例6.根据相反数的意义,化简下

21、列各数:(1)-(-48) (2)-(+2.56) (3) (4)-(-9) 例7.去除下列各式的绝对值:(1)|+2|= ,= ,|+8.2|= ; (2)|0|= ;(3)|3|= ,|0.2|= ,|8.2|= 。例8.已知a、b、c、d均为有理数,在数轴上的位置如图所示,且,求的值。例9.若m0,n0,且,比较-m,-n,m-n,n-m的大小,并用“”号连接。例10.已知a5,比较与4的大小。 课堂同步:1.所有的有理数可以用数轴上的来表示;数轴上的原点右边的点表示,原点 左边的点表示,原点表示,离原点3个单位长度的点有。2.填空:(1)-1.6是_的相反数,_的相反数是-0.2;(2

22、) 与 互为相反数,x+1的相反数是_;(3)一个数的相反数是最小的正整数,那么这个数是_ ;3.数的相反数是_;数的相反数是_。4.若|x|+|y|=0,则x=_,y=_。5.因为到点2和点6距离相等的点表示的数是4,有这样的关系,那么到点100和到点999距离相等的数是_;到点距离相等的点表示的数是_;到点m和点n距离相等的点表示的数是_6.一质点p从距原点1个单位的a点处向原点方向跳动,第一次跳动到oa的中点处,第二次从点跳动到o的中点处,第三次从点跳动到o的中点处,如此不断跳动下去,则第5次跳动后,该质点到原点o的距离为 7.将各数用数轴上的点表示出来。8.化简下列各数:(1)-(-1

23、6); (2)-(+20); (3)+(+50); (4)-(-3); (5)+(-6.09); (6)-(+3); 9.在括号里填写适当的数:-|+3|=( ); |( )|=1, |( )|=0; -|( )|=-210.如果、互为相反数,则+2+3+49+50+50+49+2+= .11.求+7,-2,-8.3,0,+0.01,-,1的绝对值。12.(1)绝对值是的数有几个?各是什么? (2)绝对值是0的数有几个?各是什么? (3)有没有绝对值是-2的数? (4)求绝对值小于4的所有整数。13.计算:(1)|-15|-|-6|; (2)|-0.24|+|-5.06|; (3)|-3|-2

24、|;(4)|+4|-5|; (3)|-12|+2|; (6)|20|-|课后练习:1.在数轴上与表示-3的点距离为四个单位长度的点有_个,它们表示的数是_2.到点7距离9个单位的点表示的有理数是_3.在数轴上,点a,b分别表示和,则线段ab的中点所表示的数是 4.如图,数轴上标出若干个点,每相邻两点相距1个单位,点a、b、c、d对应的数分别是整数且,那么数轴的原点应是( )aa点 bb点 cc点 dd点 5.说出下列各式表示的意义并化简:(1); (2); (3); (4);(5); (6); (7); (8)6.比较下列各对数的大小:1与0.01; 与0; 0.3与; 与。7.用“”连接下列

25、个数:2.6,4.5,0,28.(1)有没有最大的有理数,有没有最小的有理数,为什么?(2)有没有绝对值最小的有理数?若有,请把它写出来?(3)大于1.5且小于4.2的整数有_个,它们分别是_。9.比较大小(用“”,“”或“=”填空)(1)0.1 -10, (2)0 -5, (3)| |-|,(4)|-3| -3, (5)-|-3| -(+3), (6)- -|-|10.若,则代数式的值为 11.若,则的值等于 12.比较下列各对数的大小.(1)-5和-6 (2)-与-3.14 (3)|-|与0 13.将有理数按从小到大的顺序排列,并用“yz,x+y+z=0,则一定不能成立的是( ) ax0,

26、y=0,z0,y0,z0,y0; dx0,y0,z02.不相等的有理数a、b、c在数轴上的对应点分别是a,b,c,如果,那么b点应为( ) a.在a,c点的右边; b.在a,c点的左边; c.在a,c点之间; d.以上三种情况都有可能3.有理数在数轴上的位置如图所示,式子化简结果为( ) a b c d4.有理数在数轴上的位置如图所示,则化简的结果为 。5.x是有理数,则的最小值是 6.计算:1-3 +5-7 +9-11+97-99 7.已知两数,如果比大,试判断与的大小8.已知:,求a+b的值。9.已知:a、b、c是非零有理数,且a+b+c=0,求的值。10.有理数a、b、c均不为0,且a+

27、b+c=0,试求的值。11.计算+12.设,求a-b-c的值。课堂小练03-有理数的加减 姓名:1.下列说法正确的是( ) a两数之和必大于任何一个加数 b同号两数相加,符号不变,并把绝对值相加 c两负数相加和为负数,并把绝对值相减 d异号两数相加,取绝对值较大的加数的符号,并把绝对值相加2.甲、乙、丙三地的海拔高度分别为20米,15米和10米,那么最高的地方比最低的地方高()a.10米 b.15米 c.35米 d.5米3.x0, y0时,则x, x+y, xy,y中最小的数是 ( )a. x b.xy c.x+y d.y4.若,则的值为() a.b. c. d.5.如果a+b+c0,那么( ).a.三个数中最少有两个负数 b.三个数中有且只有一个负数c.三个数中最少有一个负数 d.三个数中两个是正数或者两个是负数6.和的符号,和的绝对值,和。7.第三赛季,泰山足球队第一场比赛输了3个球,第二场比赛赢了2个球,该队这两场比赛的净胜球是_。8.3与-5的和的相反数是 9.a地的海拔高度是21米,b地比a地高68米,那么b地海拔高度是 10.0.25比0.52大,比小2的数是.11.已知是6的相反数,比的相反数小2,则等于 12.计算:(1)6.08-(-2.83); (2)(-2)-(-1);(3)4.51.86.534; (4)(225)+

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论