固体物理-固体比热容_第1页
固体物理-固体比热容_第2页
固体物理-固体比热容_第3页
固体物理-固体比热容_第4页
固体物理-固体比热容_第5页
已阅读5页,还剩29页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、Heat Capacity of Solids 固体热容 在十九世纪,由实验得到在室温下固体的 比热是由杜隆-珀替定律给出的: BAv KNRC33 热容是一个与温度和材料都无关的常数。 其中R=NAKB,NA是阿伏伽德罗常数(6.031023 atoms /mole)KB是玻尔兹曼常数(1.3810-16尔 格/开,尔格是功和能量的单位1焦耳=107尔格)。 回想一下,1卡路里= 4.18焦耳= 4.18107尔格。 因此,(2.90)所给出的结果 6 v Ccal/deg mole(2.91) (2.90) 固体比热的经典理论固体比热的经典理论 杜隆-珀替定律的解释是基于经典统计力学 的均

2、分定理的基础之上的,该定理假设每个原 子关于它的平衡位置做简谐振荡,那么一个原 子的能量就为: 2222222 2 2 1 2 1 2 1 2 zyxkppp m kr m p Ezyx(2.92) 在一个处于平衡状态的系统中,能量 均分定理指出: Tk m p B x 2 1 2 2 对于上式中的其他项也都适用,因此在温 度T时每个原子的能量都为 E=3kBT 固体比热的经典理论固体比热的经典理论 1摩尔原子的能量则为 RTTKNU BA 33 (2.93) 随后,Cv, 由(2.90)式给出。 后来发现,杜隆-珀替定律只适用于足够高 的温度。对于一个典型固体 Cv 的值被发现 随温度的影响

3、具有如图2.9所示的行为。 v v T U C 固体比热的经典理论固体比热的经典理论 由图可知,在低温时,热容量不再保持 为常数,而是随温度的下降很快趋向于零。 固体比热的经典理论固体比热的经典理论 为了解决这一问题,爱因斯坦提出了量 子热容理论。根据量子理论,各个简谐振动 的能量本征值是量子化的,即 jjnj nE 2 1 (n nj j= =整数)整数) Modern Theory of the Specific Heat of Solids 固体比热的现代理论固体比热的现代理论 把晶体看作一个热力学系统,在简谐近 似下引入简正坐标Qi(i=1,23N)来描述振 子的振动。可以认为这些振子

4、独立的子系, 每个谐振子的的统计平均能量: j j jj jj jj jj exp 1 2 exp n n B B n n k T E n k T kT 1 令 1 2 1 E j e j j j 零点能平均热能 Modern Theory of the Specific Heat of Solids 固体比热的现代理论固体比热的现代理论 j j jjjj jj jj exp 1 2 exp n n nn E n 1 exp 2 n nn j jjj )exp(1 1 2 1 j j n 1 2exp()1 j j j 1 2 En jjj 其中其中 1exp 1 Tk n B j j 平均声

5、子数平均声子数 在一定温度下,晶格振动的总能量为:在一定温度下,晶格振动的总能量为: 0 1 ( ) 2 exp1 B EEE T k T j j j j j Heat Capacity of Solids 固体热容 1 2 1 E j e j j j 上式对T求微商,得到晶格热容: 2 1/ / 2 Tk Tk B j B jj v Bj Bj e e Tk k dT TEd C 上式分析了频率为j的振子对热容量的贡献,晶体中包含有3N 个简谐振动,总能量为: 3 1 EE (T) N j j Heat Capacity of Solids 固体热容 N j N j j j V dT Td

6、C 3 1 3 1 V )(E C 总热容就为: 爱因斯坦模型假设晶体中原子的振动是相互独立的, , 而且所有原子都以同一频率 0 0 振动。 2 / / 2 0 V 1 3C 0 0 kT kT e e kT Nk 0 的值由实验选定,使理论与实验一致。的值由实验选定,使理论与实验一致。 不足之处:模型过于简化,得到的结果以指数形式趋于不足之处:模型过于简化,得到的结果以指数形式趋于0, 与实验中以与实验中以T3 变化不符。变化不符。 Einstein模型趋于零模型趋于零 的速度太快!的速度太快! 该模型的成功之处:证明该模型的成功之处:证明0C , 0 V T Einstein模型模型 由

7、固体比热的现代理论可知: 经典的能量均分定理可以很好地解释室温下晶格热容的实验结果。经典的能量均分定理可以很好地解释室温下晶格热容的实验结果。 困难:低温下晶格热容的实验值明显偏小,且当困难:低温下晶格热容的实验值明显偏小,且当T0时,时, CV 0,经典的能量均分定理无法解释。,经典的能量均分定理无法解释。 2. Einstein模型模型 在一定温度下,由在一定温度下,由N个原子组成的晶体的总振动能为:个原子组成的晶体的总振动能为: 0 0 3 exp1 B E TN k T 假设:晶体中各原子的振动相互独立,且所有原子都假设:晶体中各原子的振动相互独立,且所有原子都 以同一频率以同一频率

8、0振动。振动。 0 .const 即:即: 0 2 0 2 0 exp 3 exp1 B VB B B k TE CNk Tk T k T 定义定义 Einstein温度:温度:0 E B k 0 2 0 2 0 exp 3 exp1 B VB B B k T CNk k T k T v 高温下:高温下:T E 即即 0B k T 2 0 2 00 1 3 expexp 22 VB B BB CNk k T k Tk T 2 0 2 00 1 3 11 22 B B BB Nk k T k Tk T 3 B Nk 0 2 0 2 0 exp 3 exp1 B VB B B k T CNk k

9、T k T v 在低温下:在低温下:T D,即,即 0 D D x T 0 2 3 93 D x VBB D T CNkx dxNk 4 0 3 2 D T 9 1 x VB x x e dx CNk e 4 0 3 2 9 1 x B x D Tx edx Nk e 4 0 3 2 9 11 11 22 D x VB D Tx dx CNk xx v 在低温下:在低温下:T D,即,即 D D x T 利用利用Taylor展开式:展开式: 23 ()(1)()(1)(2) 11() 2!3! nnnnnn n 4 0 3 2 9123 xxx VB D T CNkx eeedx 4 0 3

10、1 9 nx B n D T Nkxnedx 利用积分公式:利用积分公式: 0 11 1! ma mm mm ed aa 4 0 3 1 9 nx B n D T Nknx edx 3 5 1 4! 9 VB n D T CNkn n 4 3 3 12 5 B V D NkT CT 这表明,这表明,Debye模型可以很好地解释在很低温度下晶格热容模型可以很好地解释在很低温度下晶格热容CV T3 的实验结果。的实验结果。 由此可见,由此可见,用用Debye模型来解释晶格热容的实验结果是相当成功的,尤模型来解释晶格热容的实验结果是相当成功的,尤 其是在低温下,温度越低,其是在低温下,温度越低,De

11、bye近似就越好。近似就越好。 4 4 1 1 90 n n 几种材料晶格热容量理论值与实验值的比较几种材料晶格热容量理论值与实验值的比较 T qy qx m qm qT 在非常低的温度下,由于短波声子的能量太高,不会被热激发,而被在非常低的温度下,由于短波声子的能量太高,不会被热激发,而被 “冷冻冷冻”下来。所以下来。所以 的声子对热容几乎没有贡献;只有那些的声子对热容几乎没有贡献;只有那些 的长波声子才会被热激发,对热容量有贡献。的长波声子才会被热激发,对热容量有贡献。 B k T B k T 在在q空间中,被热激发的声子所占的体积比约为空间中,被热激发的声子所占的体积比约为 3 T m

12、q q 由于热激发,系统所获得的能量为:由于热激发,系统所获得的能量为: 3 ( )3 B D T E TNk T 3 3 12 VB D ET CNkT T 3 T m 3 D T CV T3必须在很低的温度下才成立,大约要低到必须在很低的温度下才成立,大约要低到T D/50,即约,即约 10 K以下才能观察到以下才能观察到CV随随T3变化。变化。 Debye模型在解释晶格热容的实验结果方面已经证明是相当成功模型在解释晶格热容的实验结果方面已经证明是相当成功 的,特别是在低温下,的,特别是在低温下, Debye理论是严格成立的。但是,需要指出的理论是严格成立的。但是,需要指出的 是是Debye模型仍然只是一个近似的理论,仍有它的局限性,并不是一个模型仍然只是一个近似的理论,仍有它的局限性,并不是一个 严格的理论。严格的理论。 In的的Debye温度温度 D随温度的变化随温度的变化 density of states 模式密度(态密度?)g() 确定振动谱的实验方法 晶格振动的q关系,称格波的色散关系,也称晶 格振动谱。原则上声子对X-ray、光子和中子的散射可以 通过入射波的非弹性散射反映,测量散射束可以得到声子 信息。 固体物理学书上介绍的是中子的非弹性散射,也 是最重要的实验方法,除此之外还有X射线散射,光的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论