单片机步进电机控制系统外文文献翻译_第1页
单片机步进电机控制系统外文文献翻译_第2页
单片机步进电机控制系统外文文献翻译_第3页
单片机步进电机控制系统外文文献翻译_第4页
单片机步进电机控制系统外文文献翻译_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、本科毕业设计(论文)外文翻译译文1、外文翻译是毕业设计(论文)的主要内容之一,必须学生独立完成。2、外文翻译译文内容应与学生的专业或毕业设计(论文)内容相关,不得少于 15000印刷符号。3.外文翻译译文用A4纸打印。文章标题用3号宋体,章节标题用4号宋体,正文 用小4号宋体,20磅行距;页边距上、下、左、右均为 2.5cm,左侧装订,装订线 0.5cm。按中文翻译在上,外文原文在下的顺序装订。4、年月日等的填写,用阿拉伯数字书写,要符合关于出版物上数字用法的试行规定,如“ 2005年2月26日”。5、所有签名必须手写,不得打印简单紧凑的大步长线性压电步进电机Qi Wangl and Qing

2、you Lu1,2,a)1合肥微物质科学国家实验室,中国科学技术大学,安徽合肥 230026,中华人民共和国 2强磁场实验室,中国科学院,安徽合肥 230031,中华人民共和国的中国(2009.6.11 接收;2009.7.16通过;2009.8.14网络出版)我们提出一篇关于新型压电步进电机的文章,它具有高密度,刚性,简单,和任 意方向可操作性的特点。虽然测试在室温下进行,但是由于宽松的操作条件和大步 长,该电机也能在低温下工作。电机由一个压电扫描器管来运行,它的轴向几乎被切 成两半,通过轴的弹簧部分夹持一个空心轴内部两端。双驱动电压仅使压力管的两部 分在一个方向上变形,且能反向移动轴承以恢

3、复原状,反之亦然。?美国物理研究所工业部:10.1063/1.3197381 一. 简介扫描探针显微镜(SPM在一些有重要类型的原子甚至是亚原子研究的纳米技术领 域是一个功能强大的工具。显微镜的一个关键组成部分,就是它那个能在纳米范围内 粗略接近被测物的末端或者样品的定位器,这多半需要一个压电步进电机。1-11压电电动机在其他领域也有重要应用,例如显微镜在现代光学12,细胞或者DNA空制中的定位13 o到现在为止,在尺蟆3,14-19、甲虫类生物5-7,10,20-22、剪切压电步进电机2,8,9,11,23,24 ,惯 性滑块4,25-28等文献中找到了各种各样的压电电动机。然而,他们都有着

4、严重的缺点。 对于前三种而言,每一种都需要三个或者更多的电压驱动才能被操作,这使得电机的 结构和控制都变得太过复杂。在小领域(极端环境条件)或者微信号测量等方面,他 们的可靠性和应用程度成为了一个很大的问题。惯性滑块虽然简单,但是特性不够硬(容易产生振动,从而降低了原子图像的品质),并且无法产生足够的推动力。在这片文章中,我们阐述了一个不具有以上限制的压电电动机。电机由一个压电 扫描器管(PST来运行,它的轴向几乎被切成两半,通过轴上的弹簧部分夹持一个空 心管(HS)内部两端。双驱动电压仅使压力管的两部分在一个方向上变形,且能反向 移动轴承以恢复原状,反之亦然。其紧凑,简单,刚度,和大步长的特

5、性使其在小空 问(极端条件下)和低温应用中非常有用。a)作者的联系方式如下。电话:86-551-360-0247。电子邮箱:qxl。 二.设计原理图1为我们设计的原理图。图2为实物图。两个1.5mm厚的蓝色环粘(采用了来 自环氧树脂技术的环氧树脂)在了 7.9mm内径、10.2mm外径的压电扫描管(压电扫描 管物理模型130.24,长30mm外径10mm壁厚0.5mm,有 200V的最大工作电压)的 整个外环边缘处。在压电扫描管的外径蓝色环上切两个相对的切口,长度从一段的蓝色环到另一端的蓝色环,总长大概占到整个压电扫描管的92%勺长度。为被切到的蓝色环是粘在基环上的,另外一个蓝色环被切成了两半

6、,它被称作半夹持环(夹持一个可 转动的空心管)。没对没有被切割的相邻电极用导线连在了一起,形成两个半圆柱形电 极,任意一个称为电极1 (E1),为了方便,把另一个称为电极 2 (E2)。由E1和E2控 制的压电扫描管的两部分分别简称为 P1, P2。电机可移动部分是一个钛合金空心管,它被插入到压电扫描管的内部,如图1(a)所示。我们还研究过圆形和方形的空心管,如图 1 (b)所示。对于圆形空心管而 言(长45mm内径5.8mm外径7.8mm穿过蓝色环到达压电扫描管的边缘并形成一个 0.05mm的间隙),导线从与他垂直的平面的一段管过轴到另一端。两个切割线不会穿过 整个空心管,会在每端留下 0.

7、8mm的未切割部分。空心管切除部分的那对空隙朝同一 方向打开,并且和压电扫描管上分布的缝隙是同一方向。一个弹性很强的弹簧被牢固 的固定在空心管的一端,推动空心管的打开,分别对夹持的半环施加N和N2的推力,同时空心管另一端一个较弱的压缩弹簧让空心管给基换施加一个总的压力Nbro N, N2和Nbr在上述较强和较弱的压缩弹簧上能大致平衡。因此,只要两者的摩擦系数相等, 那么施加在空心管的最大静摩擦力会因为这三个压力的大致相等而抵消(方向可能与 下面讨论的相反)。Half PST (PI)Half PST (P2)Cut via two opposite ., boundariesClamping

8、semi ring (sapphire)Uncut electrodeboundaryBase ring(sapphire)(a)Hollow shaftPiezoelectric scanner tube (PST)Circular hollow shaft(b)图1 (a)我们的压电电机的结构(b)两种空心管的研究这种在压电扫描管和空心管两段互相夹持的结构有一个很大的好处,就是这种结 构很稳定(耐振动噪声),能在任意方向上安装。同时也应注意到,这种夹持结构是灵 活的(大范围的力),这表明较大的温度变化不会引起夹持力显著的变化,且这三个最 大静摩擦力任然可以保持平衡。为了能控制电机,图3 (

9、a)所示的两个驱动电压 D1和D2分别适用于压电扫描管 的电极E1和E2 (内部电极电压定为-200V),这能试相对的半圆形螺线管 P1和P2变 形,如下图所示。在第一个1/6周期(T1)内,P1和P2初始化状态。在T2内,P1保 持不变,P2收缩。这会导致P2和空心管的自由端的电压下降,而不是基环和空心环指间电压的下滑,因为 P2到空心管的最大静摩擦力小于 fr2小于P1到空心管与基环到 空心管的最大静摩擦力之和,fri+fr br (假设这些摩擦力远远小于 P1和P2的阻力Fbl1和 国2)。下一时间段,T3, P1和P2保持在之前的状态。这种纯粹的“等待”是为下一步 的同步做好准备,这不

10、是必须的,可以去掉来节省时间。在 T4时间内,P1收缩,P2 保持不变。这会导致P1和空心管的自由端电压下降(与 T2时间的动作原因一样)。到 现在为止,P1和P2都已经在基于基础环,没有移动空心管的情况下从扩张的状态变到 收缩的状态。T5是另外一个等待时间,它也是可以去掉的。在最后一个1/6周期(T6)内,P1和P2同时扩张。这次仅在基础环和空心环之间的电压发生了下滑,因为 fr bfr i+fr 2,这意味着P1和P2同时拖动着空心管从基环扩张的方向上移动了一步。HS ;square;Half PSTElectrode wireClamping semiring (sapphire)Cut

11、 via twooppositeboundariesCopper platefor mountingase ring (sapphire)Uncut electrodeboundary最后,Pi和P2回到最初状态,空心环移动了一步。空心环也可以使用如图3 (b)所示的驱动电压在相反的方向上移动,原理是类似的。图2压电电机的实物图除了上述讨论的原型空心管,我们也尝试了方形空心管( 42mm长,5.6mm宽,壁 厚0.7mm),它的壁从一段到另一端进行了线切割(切割长度35mrm,与另一个切割线互相平行,组成了一个蛇形的结构,如图 1 (b)所示。切割平面之间的距离是 0.8mm这种设计比圆形的设

12、计相对以下方面要好:(1)空心管在蓝环上的滑落就想溜冰鞋在冰上的滑行,允许更大的压力(更线性)却又不会有更多的阻力; (2)阻力值 更精确,更稳定;(3)只需要一个压力弹簧,它在方形空心管的位置能满足最佳的工 作条件fr i-fr 2-fr br; (4)方形空心管和蓝色环指间的最小空隙容易调整扭曲(较小的空隙容易形成较大的运行距离)(a)图3 (a)趋势空心管朝压电扫描管方向扩张的两个驱动电压(b)趋势空心管朝压电扫描管相反方向扩张的两个驱动电压显然的,夹持力N1, N2和Nbr在空心管运动时不是一直存在的,因此需要限制它 的运动范围。方形空心管的运动范围可以从下述方式获得。在图 4中,弹簧

13、产生的理 Fs, LB和LC分别代表从弹簧到基环,从弹簧到半圆形夹持环的距离,由杠杆原理可 知:Lb Fs=(Ni+N) (Lc+Lb),LFs=Nr(Lc+Lb)。因为 Ni=N,我们要求 N+NN以使 空心管运动,这就意味着 LBLC这个条件应该满足。因为如果Lc=0,空心管不能运动,那么运动范围最终由 0LcLb决定。在我们的设计中,Lc+Lb= 30mm(压电扫描管的 长度),我们期望方形空心管的最大位移小于 15mm如果夹持弹簧链接到蓝色环(不是 空心管),移动范围上的这个问题的限制任然是可以解决的。Hollow shaftClamping semiBase ringrings (s

14、apphire)(s叩phire)图4图示可得运动范围大小三.性能测试我们在室温下,在移动方向(向上移动和向下移动)的极端条件下测试了电机的 运行情况,包括它的步长,速度,工作频率分别如图5 (a)的原型空心管和图 6(a)的方形空心管,工作电压分别如图5 (b)的原型空心管和图 6 (b)的方形空心管。圆形空心管的压力值设为 N=N = M=0.22N,这个值远远小于驱动压电 P1和 P2的阻力值(FbiiFbi22N)。最大步长是12.9Nm测试条件是:0.3Hz向下滑的驱动频率带动的圆形空心管。 当移动方向变为向上的时候,步长因为重力变为11.7 pm1如果是方形空心管,向下的步长和向上

15、的步长分别是8.9仙m和8.2仙簿 这个值更为合适,因为他的切割边缘与蓝 色环相接。所有这些步长值都比其他类似大小的压电电机9,11,23的步长要大。电机的转速当然和驱动频率很接近。我们设置的最大驱动频率是50Hz,圆形空心管(向上运行对向下运行)和方形空心管(向上运行对向下运行)的转速分别是(22.27对24.62) (19.44 对 19.8) mm/min当驱动频率上升或者工作电压值下降的时候,步长的下降情况如图5和图6所示。虽然我们从圆形空心管中获得了较大的步长,但是我们更倾向于使用方形空心管,因为它的优点限制更少。例如,方形空心管的运行范围是9mm(理论上),而圆形空心管的运行范围是

16、 3.3mm (比方形的在理论上少了 6.6mm)。方形空心管电机的运行 曲线如图6所示,比圆形空心管电机的曲线更平滑更稳定。虽然测试是在室温条件下进行的,但是电机在固化氮的温度下工作也有很大潜 力,原因有两个:大步长的特性可以应对热量下降带来的问题,保持运行的稳定;(2)它的弹簧夹持结构可以让压力弹簧( 5mm长,劲度系数大约是286N/M在从室 温到固化氮的很大的温度范围变化下仅有微米级的下滑,确保必要的摩擦力关系的成 立,|fr i| =|fr 2| =|fr b|,这种变化对于空心管和蓝色环之间的压力值的影响可以忽略不计。方形空心管可以承受磨损和撕裂的问题,因为它的四个边缘可以被蓝色环

17、固定为了测试它的耐久度,我们在 200V和50Hz的驱动电压下超过一千次的3mmi勺替换条 件下操作电机,电机任然能正常工作。磨损不严重。当然,空心管外部可以加上耐磨 金属材料进行更好的保护(如果需要的话)。Frequency (Hz)Speed (mnvmim 0 5 0 5 2 113 2 19871- 1 1 -1(Erl)心Nwd2s40 60 80 100 120 14。160 180 200 220士Voltage per step(V)Downward-a- - LlpwarcJ(b)图5用圆形空心管测试的电机步长(左侧垂直轴)和速度(右侧垂直轴)(a)频率(最大工作电压= 20

18、0V) (b)最大工作电压(频率=20HZSpeed (mmfm-n)0 5 0 5 02 110 5 0 5 0 59 8 8 7 7 6一一 Downward一 Upward(Ed) ds1 r I 1 I 1 I 1 I 1 I010203040508 7 6 5 4 3 2 alNG dolsFrequency (Hz)1 -0- r i t r i T r T 1 r 111 T 11 t 140 6080 100 120 140 160 180 200 220tVoltage per step(V)(b)图6用圆形空心管测试的电机步长(左侧垂直轴)和速度(右侧垂直轴)(a)频率(最

19、大工作电压=200功(b)最大工作电压(频率=20HZ)四.结束语我们呈现了一个强大的线性压电电动机,它拥有其他压电电动机不能同时具有的几个重要特性,包括:大步长,小尺寸,刚性,结构简单,操作方便,温度范围大,易形成不精确的加工公差等。耐久度测试结果非常好。在建设一个现代化的扫描探针显微镜中,所有这些性能都是非常需要的。致谢这项工程得到了中国国家自然科学基金10627403号,中国国家强磁场设施计划和中国科学院自然科学基金 YZ200846的资助。原文:A simple, compact, and rigid piezoelectric step motor with large step s

20、izeQi Wangl and Qingyou Lu1,2,aHefei National Laboratory for Physical Sciences at Microscale, University of Scienceand Technology of China, Hefei, Anhui 230026, People s Republic of China2High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui 230031,People s Republic of ChinReceiv

21、ed 11 June 2009; accepted 16 July 2009; published online 14 August 2009We present a novel piezoelectric stepper motor featuring high compactness, rigidity, simplicity, andany direction operability. Although tested in room temperature, it is believed to work in lowtemperatures, owing to its loose ope

22、ration conditions and large step size. The motor is implementedwith a piezoelectric scanner tube that is axially cut into almost two halves and clamp holds a hollowshaft inside at both ends via the spring parts of the shaft. Two driving voltages that singly deform the two halves of the piezotube in

23、one direction and recover simultaneously will move the shaft inthe opposite direction, and vice versa. ? 2009 American Institute of Physics.DOI: 10.1063/1.3197381I. INTRODUCTIONThe scanning probe microscope(SPM)is a powerful tool in the ?eld of nanotechnology with some important types having atomic

24、or even subatomic resolutions. One key component of an SPM is its coarse approach positioner which brings the tip and sample as close as in nanometer range and is many times a piezoelectric motor.1 11 The piezo-motor has nevertheless other important applications such as mirror positioning in modern

25、optics12 and cell or DNA manipulations.13 .,.-. . 3 14Up to now, there are many kinds of piezomotors found in literatures including Inchworm, 19 beetle type”,10,20 22 shear piezosteppe2;8,9,11,23,24 and inertial slider,4,25 etc.However, they all have severe drawbacks. For the ?rst three types, each

26、needs three or more piezoelectric actuators to operate, which is too complicated in both structure and control. Their reliability and applications in small space(extreme condition environments)and weak signal measurements all become severe issues. Inertial slider is rather simple, but not very rigid

27、(prone to vibration, thus downgrading the quality of atomic images)and unable to produce enough pushing force.In this paper, we demonstrate a piezoelectric motor thadoes not have the above limitations. It is implemented by a single piezoelectric scanner tube(PST) that is axially and deeply cut into

28、almost two halves and grips a hollow shaft (HS)inside from both ends by the spring parts of the HS.Two driving voltages that separately deform the two halvesof the PST in one direction and concurrently recover willmove the HS one step in the opposite direction, and viceersa. Its compactness, simplic

29、ity, rigidity, and large step size make it particularly useful in small space(extreme conditions)and low temperatureapplications.II. DESIGN AND PRINCIPLEFigure 1 shows the schematic of our design. A photo ofthe actual setup is given in Fig.2. Two sapphire rings of 1.5mm thick by 7.9 and 10.2 mm inne

30、r versus outer diametersre glued(with H74F epoxy from Epoxy Technology)onto the ends of a four-quadrant PST(model PT130.24 of Physiknstrumente, 30 mm long by 10 mm outer diameter by 0.5mm wall thickness with 200 V maximum operating voltages), respectively. A cut(with diamond saw)through two opposite

31、 boundaries of the quadrants is made from the sapphire ring at one end of the PST into about 92% of the tubength toward the other end. The uncut sapphire ring is thbase ring, whereas the other is cut into two semi rings which are called clamping semi rings(will clamp hold a mobile HS).Each pair of t

32、he neighboring electrodes with no cut inbetween is wired together, resulting in two semicylindrical electrodes, one is arbitrarily called the ?rst eletrode (E1)for convenience and the other, the second electrode(E2).Thewo halves of the PST that E1 and E2 control are abbreviatedas P1 and P2, respecti

33、vely.The moving part of the motor is a titanium HS that isinserted into the PST as shown in Fig.1(a).We have studieda circular and a square HS as 川ustrated in Fi0.(b). For the circular one(length=45mm,inner diameter=5.8mm, andouter diameter= 7.8 mm which can pass through the sapphire rings at the PS

34、T ends with a small gap of 0.05 mm)wiire cut through the axis is made from each end toward thether end with the cutting planes perpendicular to each other.The two cuts do not go through the entire HS and a smaength of 0.8 mm remains uncut at each end. The pair of thHS cut slits having the opening to

35、ward the same direction asthat of the PST slits is arranged in the same plane with theST slits. A stronger compression spring is secured in the HSit one end, pushing the HS to open wider and press againstthe clamping semi rings with forces Ni and N2,respectively,whereas a weaker compression spring i

36、n the HS at the otheend presses the HS on the base ring with a total pressingforce Nbr.The three pressing forces N,N2,and Nbr are setroughly equal by the above stronger and weaker compressioisprings. Accordingly, the maximum static friction forces on the HS due to these three pressing forces are app

37、roximateequal in value(directions may be opposite as discussed below)if equal friction coef?cients are assumed.Piezoelectric scanner tube (PST) Hollow shaftUiamping semiBase ringring (sapphire)(sapphire)Circular hollow shaft(b)FIG.1.(a)The structure of our piezomotor;(b)two kinds of hollow shaftsstu

38、died.One big advantage of this mutual clamping between theST and HS at both ends is that this structure is very ?rm(resistant to vibration noise)and can be installed in any direction. Also note that the clamping is elastic(long rangeorces),implying that large temperature variations will not change t

39、he clamping forces signi?catly and the three maximum static frictions remains equal in value.To operate the motor, two driving voltages D1 and D2 ofFig.3(a)type are applied to the electrodes E1 and E2 of theST, respectively(the inner electrode voltage is ?xed at200 V), which will deform the correspo

40、nding semitubular actuators P1 and P2 as follows. P1 and P2 are initialized to expansion states during the ?rst 1/6 period(T1).In T2,P2 shrinks while P1 stays unchanged. This results in a slidindpetween the free end of P2 and HS rather than a sliding between the base ring and HS, because the P2-to-H

41、S maximum static friction? fs smaller than the sum of the P1-to-HS and base ring-to-HS maximum static frictions, f+ frbr(assuming these frictions are much smaller than thblocking forces Fbli and Fbl2 of P1 and P2). Next, in T3, Pland P2 both stay in the previous state. This purely“wait ” spreparatio

42、n for good synchrony in the next action,which is not necessary and can be dropped to save time. InT4, Pi shrinks while P2 stays unchanged. This induces sliding between the free end of Pi and HS(y the similarreason to the T2 action).Up to now, both Pi and P2 havechanged the states from expansion to c

43、ontraction withoutioving the HS with reference to the base ring. T5 is anotheiwait which is again discardable.In the last 1/6 period(T6),P1 and P2 both expand simultaneously. This time, the slidinghappens only between the base ring and HS because fbrNbr for the HS to walk, this means that LbLc shoul

44、d be satis?ed. Since the HS cannotmove if Lc=0, the range of motion is ?nally determined by0LcLB. In our design, Lc+L b= 30mm(the length ofhe PST), we expect that maximum displacement of the square HS is less than 15 mm. This issue of limitation on theange of motion can nevertheless be solved if the

45、 clampingsprings are attached to the sapphire rings(not to the HS). III. PERFORMANCE TESTWe have tested the room temperature performance of theotor in two extreme cases of moving directions(upward and downward)by measuring its step size and speed as functions of the frequency Figs. 5(a)and 6(a)for c

46、ircular and square HS, respectivelyand operating voltageFigs.5(b)and 6(b)for circular and square HS, respectively. The pressing forces were set to N产 M=Nbr= 0.22N for circularHS which are much smaller than the blocking forces (Fbli Fbl2 2N)of the driving piezo-PI and P2.The maximum step size is 12.9

47、 m with the measurement conditions being: circular HS, downward stepping with 0.3 Hz driving frequency. When the moving direction is changed to upward, the step size becomes 11.7 m due tgoravity. In case of square HS, the downward and upward stepsizes are 8.9 and 8.2m, respectively, which is more un

48、iform because of its knife edge contacts with the sapphirerings. All these step sizes are rather large compared withther types of piezoelectric motorJ11,23 with the similar size.The speed of motion is of course closely related to the driving frequency. The maximum driving frequency we set was50 Hz,

49、at which the speeds for the circular(upward versudownward) and square(upward versus downward)HS were:(22.27 versus 24.62)and(19.44 versus 19.98)mm/min.When the driving frequency increases or if the magnitude of the operating voltage drops, the step size diminishesas seen in Figs.5 and 6. Although we

50、 get larger step sizefrom circular HS, we still prefer the square HS owing to itsadvantages listed earlier. For instance, the travel range usingthe square HS is 9 mm(as designed)compared with 3.3 mrfor the circular HS(worse than the designed 6.6mm travelange).The performance curves of the square HS

51、motor seerin Fig.6 are also smoother and more consistent than those (F5)of the circular HS motor.Speed2(a)40 60 80 WO 120 140 t60 WO 200 220土Voltage per step(V)(b)FIG.5.The step size(left vertical axis)nd speed(right vertical axis of the motor using the circular HS as functions of (a) frequency(maximum operating voltage=200 V) and (b) maximum operating voltage (frequency=20 Hz).Although tested in room temperature, the motor has highpotential to work in liquid helium temperature for two reasons:(1)it

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论