




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、单自由度系统阻尼自由振动单自由度系统阻尼自由振动 引言 惯性体由于任何外力原因离开平衡位置之 后,只受到和位移成比例的恢复力作用, 惯性体将在平衡位置附近按照其固有频率 进行简谐振动。由于没有能量耗散,系统 的机械能保持守恒。振动无限期的进行下 去。 引言 对于实际的振动系统,由于不可避免的存 在各种阻尼,振动系统的机械能不断转化 为其他形式的能,造成振幅衰减,以致最 后振动完全停止。 阻尼定义 阻尼是用来衡量系统自身消耗振动能量能 力的物理量 。 线性阻尼 又称粘性阻尼,由粘性阻尼引起的粘性阻 尼力的大小与相对速度成正比,方向与速 度方向相反。阻尼系数为常数。 为了研究方便,通常将阻尼进行线
2、性化, 线性化的方法是等效原则。即在运动过程 中,线性阻尼和原非线性阻尼吸收的能量 一样多。 车辆中广泛存在的阻尼 在车辆当中,广泛存在的阻尼有,悬挂/悬 架系统的减振器,轮胎的橡胶和其他各种 橡胶支撑,液体(浸没在液体中振动物 体),摩擦表面(离合器),金属橡胶等。 液压减振器工作原理 活塞 活塞缸 液流方向 活塞运动方向 阻尼孔 流体具有黏滞性而产生能耗及阻尼作用,称黏性阻尼;制有小 孔的阻尼器,当流体通过小孔时,形成涡流并损耗能量,所以 小孔阻尼器的能耗损失实际上包括黏滞损耗和涡流损耗。 轮胎的阻尼 轮胎变形量 轮 胎 恢 复 力 压缩 复原 O 耗能量由分析恢复力轮胎变形所包围的面积得
3、到 单自由度粘性阻尼的自由振动 以物体的平衡位 置为原点,水平 方向为x轴正向, 建立如图所示的 坐标系。 kx cx c k x m m x O 微分方程的建立 根据受力分析,和初始条件,可以得到下 面的微分方程。 00 0 (0),(0) mxcxkx xxxx 方程求解 由于方程为齐次的,因此,方程的解具有 如下形式: 将解的形式带入微分方程: st xe 2 0 st ck sse mm 特征方程及其解 由于 ,因此,要想方程成立; 必须:称为微分方程 的特 征方程 可以解出它的两个根: 0 st e 2 0 ck ss mm 2 1,2 22 cck s mmm 微分方程的通解 微分
4、方程的通解为: 为任意常数,由运动的初始条件决定。 而解的形式,决定于 。随着阻尼系数 的不同,特征方程可以有两个不等的负实 根,相等的负实根和一对共轭复根。 12 s ts t xBeDe ,B D 12 ,s s 临界阻尼系数 使特征方程有两个相等负实根的阻尼系数 值,称为临界阻尼系数(critical damping coefficient)记为, c c 22 cn ckmm 阻尼比 令 ,称为阻尼比或者相 对阻尼系数。是一个无量纲的数, 是一个重要 振动参数。 表征一个振动系统阻尼的大小: 表示大阻尼, 表示临界阻尼, 表示小阻尼。 22 cn ccc cmkm 1 1 1 微分方程
5、和解的表达方式 由 ,和 原来的微分方程可以改写成: 特征根: n k m 2 2 cn n c cc cm mc mm 2 20 nn xxx 2 1,2 1 n s 大阻尼情况的讨论 当 ,方程的特征根 , 均为实数,方程的通解为: 与初始条件 有关, 1 2 1,2 1 n s 22 11 12 nnn ttt xeAeA e 12 ,A A 00 ,x x 00 1,20 2 1 2 1 n n xx Ax 大阻尼系统的运动特点 可以证明, 越过平衡位置的次数至多有一次。 22 11 12 nnn ttt xeAeA e t xx t x t x0 x0 x0 x0 x0 x0 临界阻
6、尼情况的讨论 当 ,特征方程的根 由微分方程的理论,方程的解为: 代入初始条件可得: 1 1,2n s 12 nn tt xAeA te 10200 , n AxAxx 临界阻尼系统的运动特点 可见,临界阻尼下的系统的运动也不是振 动,但在相同的条件下,临界阻尼的系统 的自由运动最先停止,因此,仪表都将系 统的阻尼设置为临界阻尼。 小阻尼系统的运动特点 当 ,特征方程的根 令: 1 2 1,2 1 nn sj 2 1 dn 解的三角形式 方程可以写成: 由初始条件, 12 cossincos() nn tt ddd xeCtCtAet 10 Cx , 00 2 n d xx C 2 2 00
7、0 n d xx Ax , 1 00 0 tan n d xx x 小阻尼的运动曲线 如图所示的为衰减振 动。在 的时候,物体的运动 曲线和曲线: 相切, 在切点的x值的绝对 值 称为振幅。 cos()1 dt nt xAe nt Ae 05101520 -5 -4 -3 -2 -1 0 1 2 3 4 5 时间 振幅 小阻尼振动曲线 阻尼振动的特点 由于有衰减项的存在,因此阻尼振动既不 是简谐的,也不是周期的。而是随着时间t 趋于无穷时,振幅逐渐衰减为零,系统趋 于静止。这是阻尼自由振动和无阻尼自由 振动的主要区别之一。 阻尼振动的数字特征 习惯上,将函数 的周期称为衰 减振动的周期,故衰减
8、振动的周期和频率 分别为: cos() dt 22 22 11 d d n T T 2 2 1 1 22 nd d ff 阻尼对频率和周期的影响 可见,阻尼的存在,使系统的振动频率降 低,振动周期延长。但有的时候,阻尼的 存在对于周期和频率的影响,可以略去不 计。 22 2 11 1() 2 1 xo x x 222 1 11() 2 xxo x ( ) 0 0 0 () ( ) () ! n n n fx f xxx n 忽略阻尼影响的条件 根据上述展开,大家可以口算当 和 时,系统的周期和频率变化幅度。 所以,当时 ,通常忽略阻尼对固 有频率和周期的影响 0.05 0.3 0.3 阻尼对振
9、幅的影响 阻尼对与振幅的影响非常大。设 和 分别 是相邻两次的振幅,对应的时间分别为: 和 ,则: 可得: 在一个周期后,幅值缩减到原来的 1 x 2 x 1 t 2 t 1 1 1 2 n n d nd t T tT xAe e xAe 1 n d T e d Ttt 12 衰减数据 在 的情况下,在一个周期振幅减小27%, 经过10个周期,振幅减小到原来的4.3%。可见, 只要有微弱的阻尼,就可以使振动迅速衰减。 从上式可以看出,如果两个振动系统的固有频率相 同,则阻尼比较大的系统自由振动衰减得较快,这 也说明阻尼比表示了系统消耗振动能量的能力。如 果两个振动系统的阻尼比相同,则固有频率比
10、较大 的系统自由振动衰减得较快,这也就是常说的; “高频成分衰减快”在单自由度系统时的情况。 0.05 对数缩减率 前后相邻的任意两次振动的振幅之比的自 然对数,称为对数缩减率,记为: 由于: 可得: 当在小 的时候,有 1 2 ln nd x T x 2 1 d T T 2 2 1 12 对数缩减率的作用 由 ,可以求出 当在 的时候, , 为了便于测量, 通常由 获得 2 2 1 22 4 12 2 11 ln t n t n x nnx 例子 试证明:在衰减振动中,在相邻两个位移 最大值消耗的机械能 ,与开始时的机械 能 之比为常量,在阻尼很小的时候, 有: U 1 U 1 2 U U 证明 设第一个位移最大值 ,相邻的位移最大 值 ,则相应的机械能为:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中国浮选机衬里行业市场发展监测及投资潜力预测报告
- 2025年面食市场调研报告
- 2025年职工年度述职报告范文
- 中国特效清洁上光剂行业市场发展前景及发展趋势与投资战略研究报告(2024-2030)
- 2022-2027年中国热反射玻璃行业市场全景评估及投资潜力预测报告
- 2025年清华大学000建筑学院081400土木工程报录数据分析报告初试+复试
- 2024年小学四年级语文教案计划
- 2020-2025年中国食糖行业发展前景预测及投资战略研究报告
- 2024-2030年中国微型车行业市场全景分析及投资策略研究报告
- 2025年中国不锈钢咖啡套杯行业市场发展前景及发展趋势与投资战略研究报告
- 浙里贷(数字贷款)复习试题附答案
- 山东档案职称考试《档案基础理论》完整题(附答案)
- 2025年食品安全管理考试试题及答案
- 2025年 吉林省长白山公安局警务辅助人员招聘考试试卷附答案
- 2025年公共卫生管理考试试卷与答案
- 2025至2030空调行业市场发展现状及竞争格局与投资价值报告
- 冠心病介入治疗术
- 2025至2030中国环氧活性稀释剂市场未来趋势及前景规划建议报告
- 《基础会计》教案 项目二 会计要素和会计等式
- 我勇敢教学课件
- 2025年干散货物集装箱项目市场调查研究报告
评论
0/150
提交评论