




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 第3章 智能材料中的光纤传感系统 1 高锟 华裔物理学家,为光纤通讯、 电机工程专家,华文媒体誉之为 “光纤之父”、普世誉之为“光 纤通讯之父”(Father of Fiber Optic Communications),曾任香港中文大学 校长。2009年,与威拉德博伊尔和乔治埃 尔伍德史密斯共享诺贝尔物理学奖。 第3章 智能材料中的光纤传感系统 2 高锟高锟光纤之父光纤之父 博伊尔博伊尔&史密斯史密斯发明发明CCD图像传感器图像传感器 2009年诺贝尔奖物理学奖得主年诺贝尔奖物理学奖得主 Fig.1贝尔实验室贝尔实验室George Smith和和 Willard Boyle将可视电话和半导
2、体将可视电话和半导体 存储技术结合发明了存储技术结合发明了CCD原型原型 Fig.2 现代现代CCD芯片外观芯片外观 第3章 智能材料中的光纤传感系统 3 赵梓森 中国工程院院士,国际电气电子工程 师协会高级会员,他是我国光纤通信 技术的主要奠基人和公认的开拓者, 被誉为“中国光纤之父” 。 武汉中国光谷的首席科学家,因为亲手研发了 中国第一根实用化光纤光缆和第一套光纤通信 系统,而被誉为“中国光纤之父”。 第3章 智能材料中的光纤传感系统 4 什么是光纤? 光纤是光导纤维的简写,是一种由玻璃或塑料 制成的纤维,可作为光传导工具。 第3章 智能材料中的光纤传感系统 5 传输原理:光的全反射(又
3、称全内反射,指光 由光密介质(即光在此介质中的折射率大的) 射到光疏介质(即光在此介质中折射率小的) 的界面时,全部被反射回原介质内的现象) 第3章 智能材料中的光纤传感系统 6 v全反射的应用:光导纤维和液晶背光 v光纤在结构上有中心和外皮两种不同介质,光从中 心传播时遇到光纤弯曲处,会发生全反射现象,而 保证光线不会泄漏到光纤外。 v背光是电子工业中一种常用的照明形式,常被用于 LCD显示器上。背光是从显示器的侧边或是背后提 供照射,其光源可能是电光面板,发光二极管等。 电光面板提供整个表面均匀的发光。与光纤的要求 不同,在边缘型LED背光中,要求破坏发光管 (Lighting Pipe)
4、表面的全发射条件,使得光线可 以从发光管中泄漏出来而产生照明的效果。 第3章 智能材料中的光纤传感系统 7 v微细的光纤封装在塑料护套中,使得它能够弯曲而不至于断 裂。通常,光纤的一端的发射装置使用发光二极管(light emitting diode,LED)或一束激光将光脉冲传送至光纤,光 纤的另一端的接收装置使用光敏元件检测脉冲 。 v在日常生活中为什么光纤被用作长距离的信息传递? v通常光纤与光缆两个名词会被混淆。多数光纤在使用前必须 由几层保护结构包覆,包覆后的缆线即被称为光缆。光纤外 层的保护层和绝缘层可防止周围环境对光纤的伤害,如水、 火、电击等。 光缆分为:缆皮、芳纶丝、缓冲层和
5、光纤。 光纤:同轴电缆相似,只是没有网状屏蔽层。中心是光传播 的玻璃芯。 第3章 智能材料中的光纤传感系统 8 v光纤的芯 在多模光纤(在给定的工作波长上传输多种模式的光 纤 )中,芯的直径是50m和62.5m两种,大致与 人的头发的粗细相当。而单模光纤(只能传一种模式 的光纤 )芯的直径为8m10m。 第3章 智能材料中的光纤传感系统 9 v为什么要有包层和涂覆层呢? v芯外面包围着一层折射率比芯低的玻璃封套, 俗称包层,包层使得光线保持在芯内。再外 面的是一层薄的塑料外套,即涂覆层,用来 保护包层。光纤通常被扎成束,外面有外壳 保护。 v纤芯通常是由石英玻璃制成的横截面积很小 的双层同心圆
6、柱体,它质地脆,易断裂,因 此需要外加一保护层。 第3章 智能材料中的光纤传感系统 10 光纤传输的优点: v频带宽:频带的宽窄代表传输容量的大小。 v损耗低:光纤传输损耗还有两个特点,一是在全部有线电视 频道内具有相同的损耗,不需要像电缆干线那样必须引入均 衡器进行均衡;二是其损耗几乎不随温度而变,不用担心因 环境温度变化而造成干线电平的波动。 v重量轻:光纤是玻璃纤维,比重小,使它具有直径小、重量 轻的特点,安装十分方便。 v抗干扰能力强:因为光纤的基本成分是石英,只传光,不导 电,不受电磁场的作用,在其中传输的光信号不受电磁场的 影响,故光纤传输对电磁干扰有很强的抵御能力。光纤中传 输的
7、信号不易被窃听,利于保密。 v保真度高:因为光纤传输一般不需要中继放大,不会因为放 大引入新的非线性失真。 v成本不断下降:由于制作光纤的材料(石英)来源十分丰富, 随着技术的进步,成本还会进一步降低 第3章 智能材料中的光纤传感系统 11 光纤的应用 通信应用 利用光导纤维进行的通信叫光纤通信。一对金属电话 线至多只能同时传送一千多路电话,而根据理论算, 一对细如蛛丝的光导纤维可以同时通一百亿路电话! 铺设1000公里的同轴电缆大约需要500吨铜,改用光 纤通信只需几公斤石英就可以了。 医学应用 光导纤维内窥镜可导入心脏和脑室,测量心脏中的血 压、血液中氧的饱和度、体温等。用光导纤维连接的
8、激光手术刀已在临床应用,并可用作光敏法治癌。 第3章 智能材料中的光纤传感系统 12 传感器应用 光导纤维可以把阳光送到各个角落,还可以进行机械 加工。计算机、机器人、汽车配电盘等也已成功地用 光导纤维传输光源或图像。如与敏感元件组合或利用 本身的特性,则可以做成各种传感器,测量压力、流量、 温度、位移、光泽和颜色等。在能量传输和信息传输 方面也获得广泛的应用。 艺术应用 由于光纤的良好的物理特性,光纤照明和LED照由于 光纤的良好的物理特性,光纤照明和LED照明已越来 越成为艺术装修美化的用途。 第3章 智能材料中的光纤传感系统 13 光纤技术与应用1,2,3 对什么是光纤有更深的了解了吗?
9、 到此光纤的基本知识介绍完毕。 第3章 智能材料中的光纤传感系统 14 3.1 发展概述 用光导纤维构成智能材料的传感系统是从70年代末开始 的.(3个阶段) 1.把光纤埋入先进复合材料,用来监测复合材料的应变及温 度。目的是用光纤完成多种参数测量和信号传输,解决的主 要问题是光纤、光纤传感器和复合材料类型选择与设计、光 纤和复合材料相容性研究、光纤埋入工艺探索等。 2.大量开展了用光纤传感器监测复合材料固化、材料承载后 动态性能测试和材料损伤评估等关键技术项目的基础研究。 其工程和学术上的价值在于:促进了先进复合材料,如碳 纤维或有机纤维加强的树脂基复合材料在结构件中的实际应 用;光纤传感技
10、术和先进复合材料成功地结合,为发展智 能材料奠定了技术基础。 3. 90年代初,光纤智能蒙皮完成关键技术研制和飞行性能评 估,进入应用研究阶段。 第3章 智能材料中的光纤传感系统 15 飞机装配光纤智能蒙皮部位示意图(深色部位)飞机装配光纤智能蒙皮部位示意图(深色部位) 第3章 智能材料中的光纤传感系统 16 第3章 智能材料中的光纤传感系统 17 装有智能蒙皮的战斗机具有如下优点: (1)用于武器装备外壳的先进复合材料加工成型过程中随时监 测热压成型工艺中复合材料的温度和固化程度,提高了材料使 用的可靠度,并可避免安全设计余量过大而造成的浪费和整机 质量的增加,这一直是航空设计领域的难题;
11、(2)起飞前自动进行机身构件及蒙皮的非损伤评估,预测飞行 可能性; (3)在飞行过程中,实时、自动分布监测机身和机翼的空气动 力学参数、所受应力及温度变化; (4)在战斗过程中,实时监测飞行负载环境及损伤的形成,评 价战斗损伤,计算剩余实力,存贮相关数据,并向飞行员提供 飞行限制; (5)着陆以后,智能蒙皮向地面人员提供积累的飞行数据以及 有关结构完整性和所需维修的信息。 第3章 智能材料中的光纤传感系统 18 使用光纤传感器的智能材料分为智能结构和智能蒙皮。 1.智能结构: 智能结构是指大型智能构件(如桥梁、建筑物、大坝的 水泥预制件,核反应堆、火箭发射台的基座,航天飞行器、 陆地战车和潜艇
12、的框架等)。它可测量结构的载荷大小、 振动幅度、温度和应力分布、应变、扭曲、蠕变、层解、 微裂及其他损伤,广泛用于载荷引起的结构疲劳和地震灾 害预测等军用及民用大型设施。 2.智能蒙皮: 智能蒙皮则用于机翼、潜艇外壳、推进器叶片等。它除 具有智能结构的性能外,与内部执行器配合,还可自动检 测和控制壳体振动、流体与表面引起的噪音,自动检测和 调节材料的多种性能(如反光性能、反辐射性能、电或热 导性能、通风渗透性能等),或改变自身形状。 第3章 智能材料中的光纤传感系统 19 第3章 智能材料中的光纤传感系统 20 第3章 智能材料中的光纤传感系统 21 第3章 智能材料中的光纤传感系统 22 第
13、3章 智能材料中的光纤传感系统 23 3.2 智能材料中传感系统的选择 集成型智能材料由在基体材料中埋人传感系统、 人工神经网络和执行器(驱动)系统组成。对传感器的 选择应满足如下基本要求。 (1)满足强度相容要求; (2)满足界面相容要求; (3)满足工艺相容要求; (4)满足场分布相容要求; (5)满足尺寸相容要求。 第3章 智能材料中的光纤传感系统 24 先进复合材料中埋入光纤传感阵列取得成功,正是因为它 们基本符合上述传感介质与基体材料的相容关系。 对复合材料来说,其纤维增强组分和分层结构适合光纤的 埋入。对光纤来说,它更具有其他类型传感介质无可比拟的 优点。光导纤维具有传感和传输双重
14、功能,即光纤中传输光 波,经一定结构的光纤传感回路,可以使光的传输强度、偏 振、相位或波长受到待测物理量的调制,被调制后的信号仍 在光纤中传播。省去了金属导线,减少了电磁干扰。光纤作 为传输载体时直径细小、质量轻、易弯曲、耐高温并便于埋 入复合材料。除此之外还具有抗电磁干扰、耐化学腐蚀、传 输带宽较宽、用单根光纤可以进行波分复用和复用等优点。 作为传感介质,用光纤组成的干涉型传感器可测量温度、压 力、速度、流量、位移、电磁场等多种物理量并且有极高的 灵敏度。因此光纤已成为当前智能材料首选的信息传感和传 输的理想载体。 第3章 智能材料中的光纤传感系统 25 3.3 智能材料用特种光纤 光纤的基
15、本属性使它适于作为集成型智能材 料的传感,但在具体应用中还有一些特殊要求。 1.细径光纤 2.特殊涂覆光纤(聚酰亚胺涂层光纤) 3.抗疲劳光纤 4.单模保偏光纤 5.双模光纤 6.同心双通光纤 第3章 智能材料中的光纤传感系统 26 普通通信光纤 光纤呈圆柱形,它由纤芯、包层与涂敷层三大部分组成 第3章 智能材料中的光纤传感系统 27 1、纤芯、纤芯 纤芯位于光纤的中心部位(直径d1 约950 微米), 其成份是高纯度的二氧化硅,此外还掺有极少量的掺杂 剂如二氧化锗,五氧化二磷等。掺有少量掺杂剂的目的 是适当提高纤芯的光折射率 (n1) 。 2、包层、包层 包层位于纤芯的周围(其直径d2 约1
16、25 微米),其 成份也是含有极少量掺杂剂的高纯度二氧化硅。而掺杂 剂(如三氧化二硼)的作用则是适当降低包层的光折射 率 (n2) ,使之略低于纤芯的折射率。 3、涂敷层、涂敷层 光纤的最外层是由丙烯酸酯、硅橡胶和尼龙组成的 涂敷层,其作用是增加光纤的机械强度与可弯曲性。一 般涂敷后的光纤外径约1.5 厘米。 第3章 智能材料中的光纤传感系统 28 第3章 智能材料中的光纤传感系统 29 第3章 智能材料中的光纤传感系统 30 1.细径光纤 普通单模光纤的芯/包层直径为9-125um ,多模光纤为50- 125um ,加上外保护涂层直径为250um 。先进复合材料中 典型的加强碳纤维的直径只有
17、10 um 。因此相对来说,光纤 显得太粗,埋入复合材料后会在光纤周围形成树脂富集区。 树脂富集区的大小与光纤直径及光纤与碳纤维相对取向有关。 在其他条件相同的情况下,当光纤与碳纤维垂直走向时,树 脂富集区最大。随两种纤维走向逐渐平行,树脂富集区也随 之减小。树脂富集区大小随光纤直径的变化示于表3-1,它 随光纤直径的减小而缩小。复合材料受到外力作用时,在树 脂富集区将发生应力集中,应力值可能比均匀复合区高出一 个数量级,造成复合材料强度下降。 第3章 智能材料中的光纤传感系统 31 光纤周围树脂富集区 m2 mm 光纤外径对形成树脂富集区的影响 光纤外径( 树脂富集区( 光纤外径 树脂富集区
18、 1409.86 904.26 603.14 402.29 第3章 智能材料中的光纤传感系统 32 一般来说,埋入复合材料作传感系统使用的光纤, 要求外径尺寸与复合材料的层间厚度相近。 制造细径光纤可以采用两种方法。对小长度光纤 (几米至上百米)一般用腐蚀法制造。如果用量较大,应 在光纤拉丝工艺中加以控制。 除光纤直径以外,光纤在复合材料中相对于加强 纤维(如碳纤维)的走向及埋入深度(埋在第几层之 间),对复合材料强度及检测灵敏度有显著影响。但 这种影响又与光纤直径、涂层材料、复合材料基体和 测量的量等多种因素有关。因此针对不同使用要求, 应做出权衡选择。 第3章 智能材料中的光纤传感系统 3
19、3 从已完成的大量研究工作中,可得出如下结论。 (1)光纤夹在加强纤维的两直排层间并与加强纤维平行, 对复合材料沿此方向的拉伸强度的影响可以忽略不计。这 种结构适于测量复合材料的温度和应变。 (2)用于检测断裂临界负载造成的损伤时,光纤应埋在靠 近最大应变的表层,并与上、下直排加强纤维正交,如图 3-3中,这样可获得最大灵敏度。 (3)光纤外径小于复合材料层间厚度(120um140um ) 时材 料的拉伸强度下降较小,不影响大多数情况下使用。 (4)埋入光纤根数对强度有一定影响。 用不用数量的光纤 埋入单位体积材料中。 第3章 智能材料中的光纤传感系统 34 光纤与加强纤维的各种取向 光纤埋入
20、复合材料剖面图 第3章 智能材料中的光纤传感系统 35 2 特殊涂覆光纤 智能材料传感器光纤埋入复合材料时,光纤涂层应具有 较高的弹性模量和良好的耐高温性能。 常用的紫外固化丙烯酸类涂层对光纤的附着力较差,而 且固化后仍有明显的塑性。这种一次被覆光纤在复合材料中 与基体材料的耦联性差,不能有效地将应变耦合给光纤,因 而影响应力测量灵敏度。初期的实验曾使用裸光纤,光纤表 面虽具有很好的刚性,但很脆,不能在恶劣环境下使用。 光纤涂层的耐高温特性主要是复合材料成型工艺要求的。 由于使用的树脂不同,复合材料的热压成型工艺一般在 150390下进行。实验表明,如果在复合材料中埋人丙 烯酸涂层光纤,当复合
21、材料温度为160时,由于涂层性能下 降,导致复合材料的层间剪切强度下降8,纵向压缩强度下 降26;而高于175时丙烯酸涂层根本不能使用。 第3章 智能材料中的光纤传感系统 36 聚酰(xin )亚胺涂层光纤可同时解决上述两个问题。聚酰亚 胺类树脂如热固性聚酰亚胺(PI) 已被正式用于高性能光纤涂层, 它固化后有足够的刚性,长期使用温度可达300350,短 期可经受450500高温,200以下工作寿命超过50000h, 因此聚酰亚胺涂层光纤是智能材料与结构中使用的惟一理想实 用光纤。 金属涂层光纤也是特殊涂覆光纤的重要品种。金属涂层一般 都具备耐高温和刚性好的特性,满足埋人复合材料加热成型的 工
22、艺要求和应力耦合的必要条件。但常用的铝涂层光纤埋人复 合材料后,由于铝的氧化层与树脂亲合力差,影响了它的实际 使用。当前金属涂层光纤用于树脂基和水泥基智能材料的研究 工作正在进行,研究的重点是寻找适当的金属涂层。它应与树 脂有较强的亲合力或能抗水泥碱性的腐蚀,同时还要满足涂覆 工艺方便、成本低廉的要求。 第3章 智能材料中的光纤传感系统 37 3 抗疲劳光纤 影响硅基光纤长期可靠性的两个重要因素是由静态疲劳 引起的光纤强度衰减和渗氢引起的光纤损耗增加。在光纤 的制作过程中,光纤表面不可避免地会产生某些微裂纹和 微缺陷,在使用过程中,如成缆、敷设造成的弯曲和应力, 引起光纤微裂纹末端应力集中,使
23、光纤强度下降。另外, 即使光纤在存放状态下,由于环境中微量氢气和水汽也会 产生应力腐蚀现象,使微裂纹扩展。 埋入智能材料的光纤多用于测量应力和温度,因此经常 处在应力状态中。此外,随温度的变化复合材料的有机树 脂也会产生少量的氢气。这些因素都会加速光纤的疲劳过 程,使已埋入复合材料的光纤的长期可靠性受到影响。解 决这问题的有效途径是使用抗疲劳光纤。 第3章 智能材料中的光纤传感系统 38 抗疲劳光纤是在光纤包层外用化学气相沉积法直接沉积 一层碳膜,然后再涂上一层聚合物防护涂层。碳膜厚度一 般为30nm80nm,光纤结构如图所示。 光纤作为智能材料传感 系统埋入复合材料后不 可能再更换或取出。在
24、 智能材料经常受到应力 载荷或完成自适应功能 而变形的情况下,光纤 的长期可靠性和寿命尤 为重要,因此必须使用 抗疲劳光纤。碳涂覆光 纤也是一种特殊涂覆光 纤。 碳涂覆工艺最成熟,且成本低、 抗疲劳性能优异,已成为抗疲劳光 纤的主要品种。它在军用光纤信号 及图像传输、海底光缆等场合也有 重要应用。 第3章 智能材料中的光纤传感系统 39 4 单模保偏光纤 普通单模光纤中有两个偏振模传输。在理想状态下,它们 应有相同的偏振状态。但在实际中由于光纤几何形状不标准、 结构不对称、工艺中的残余应力等原因,使偏振模的简并退 化而形成两个正交的偏振模。又由于外界温度、应力、微弯 等因素的影响,普通单模光纤
25、中产生线性双折射和圆双折射, 使这两个偏振模发生耦合,因而光纤内部传输光束的偏振状 态在空间和时间上是随机变化的。光纤传输状态的不确定性, 妨碍了它在干涉型光纤传感器中的应用。 单模保偏光纤具有在传输过程中保持入射偏振状态不变 的作用。制作这种光纤的主要途径是人为增加光纤内部双折 射,使其远远超过上述各种因素的影响,可使被激励的一个 偏振本征模的功率不会耦合到另一个正交模中去,从而保持 了入射偏振状态的稳定。这种保偏光纤也叫高双折射光纤。 第3章 智能材料中的光纤传感系统 40 几种保偏光纤的结构 (a)椭芯光纤(b)熊猫光纤 (c)碟形光纤(d)椭圆包层光纤 第3章 智能材料中的光纤传感系统
26、 41 5 双模光纤 光波是一种电磁波。它在光纤这种波导结构中传输 必须满足麦克斯韦方程和由光纤材料、结构决定的边界 条件。由于工作波长和光纤结构不同,光纤内部可以传 输不同的电磁波。 不同的传输模具有不同的电磁分布(强度分布)、不 同的传播常数(传播速度)、不同的偏振状态。单模光纤 只允许最低阶模,在弱波导理论中叫LP01模(或基模)传 输。如上节所述,纤芯具有圆形截面的单模光纤的LP01 模由两个偏振方向相互垂直的本征模组成,这两个模有 相同的强度分布和不同的偏振状态 。 第3章 智能材料中的光纤传感系统 42 满足单模传输的条件是 4048. 2 2 2 2 2 1 nn a 对一确定的
27、光纤,满足上式的波长叫截止波长 为: c 2 2 2 1 4048. 2 2 nn a c 是除基模LP0l以外的次低阶模LPll模的截止波长,当工 作波长 c c 时该模截止,只有基模LP0l传输 c 当 时,LP0l和LP11模同时传输,工作在这种状态 下的光纤称双模光纤。 第3章 智能材料中的光纤传感系统 43 LP11模由奇模LP11O和偶模LP11e组成。实际上双模包 括了LP01、LP11O和LP11e中各自相互垂直的六个本征振模, 如图所示。 LP11和LP01模的强度分布和偏振结构 (a)LP01模 (b)LP11模 第3章 智能材料中的光纤传感系统 44 智能材料中的光纤传感
28、系统,一般是把光纤组成干涉仪使 用。光纤干涉仪由信号光纤(信号臂)和参考光纤(参考臂)组成。 信号光纤受到外界待测场的扰动,感生了传输光束的相位变 化,与参考臂未受扰动的相位比较,通过相干光强度的变化 检测出待测量。如果把干涉仪信号臂和参考臂都埋人复合材 料,参考臂光纤也受到与信号臂同样的影响,产生同样的相 位变化,就起不到参考作用,因而无法进行相干检测。 保偏光纤或双模光纤传输的不同模式,随外界环境变化将 产生相位差。因此在智能材料实际应用时,用单根光纤(保偏 光纤或者双模光纤)中两个不同的传输模分别作为信号通道和 参考通道,代替组成光纤干涉仪的两根光纤,是解决上述问 题的理想方案,并已取得
29、满意效果。智能材料中使用保偏光 纤或双模光纤的意义不仅是完成上述干涉测量,而且由于用 一根光纤代替两根光纤,使埋人光纤根数减少一半,这对提 高复合材料强度和简化嵌埋工艺都是非常重要的。 第3章 智能材料中的光纤传感系统 45 6 同心双通光纤 同心双通道光纤可同时检测出智能材料外力冲击的位 置和大小。 光纤由同轴双层纤芯组成,中心是弱波导单模纤芯, 周围是环状大数值孔径多模纤芯。当光纤在复合材料中受 到扰动时,光从弱波导单模纤芯泄漏到多模环形芯中。在 环形波导中,光的传播速度与在单模芯中不同。在光纤检 测端能收到两个信号,一个来自中芯,一个来自环形芯。 信号到达时间差确定了扰动位置,环状多模芯
30、中光的强度 确定了扰动大小。这种光纤于80年代末期由美国布朗大学 开发成功并用于智能材料实验。最近两年俄罗斯航空学院 详细研究了这种光纤的结构参数对检测灵敏度的影响并对 传感器结构进行了改进。 第3章 智能材料中的光纤传感系统 46 光纤传感器在生活中的应用 v1、在民用工程布局中的使用 民用工程的布局监测是光纤光栅传感器最活跃 的范畴。力学参量的丈量关于桥梁、矿井、地道、 大坝、建筑物等的保护和情况监测是非常重要的。 通过丈量上述布局的应变散布,能够预知布局有些 的载荷及情况。光纤光栅传感器能够贴在布局的表 面或预先埋入布局中,对布局一起进行冲击检测、 形状操控和振荡阻尼检 测等,以监视布局
31、的缺点情 况。别的,多个光纤光栅传感器能够串接成一个传 感网络,对布局进行准散布式检测,能够用计算机 对传感信号进行长途操控。 第3章 智能材料中的光纤传感系统 47 光纤传感器在温度测验中的使用 它是使用光在光纤中传输能够发作后向散射, 在光纤中注入一定能量和宽度的激光脉冲,那么它 在光纤中传输的一起不断发作后向散射光波,这些 后向散射光波的情况受到地点光纤散射点的温度影 响而有所改动,将散射回来的光波经波分复用、检 测解调后,送入信号处置体系便可将温度信号实时 显示出来,并且由光纤中光波的传输速度和背向光 回波的时刻对这些信息定位 热电偶测温最高1600多度,蓝宝石测温可达2000多度。
32、第3章 智能材料中的光纤传感系统 48 光纤传感器在裂缝监测中的使用 当地下深部发作变形时,必将揉捏砂浆 体发作相应形变,致使裂缝或滑移(错动) 的发作,进而导致埋入光纤的微弯,该处的 微弯将损坏光波导的全反射条件,使光损耗 添加,发作衰减,使用光纤监测地下深部变 形,即是基于微弯衰减的传感机制。 埋入洞内的光纤,全部是传感有些,受 深部变形作用,光纤发作微弯或挠曲,致使 光损耗增大 第3章 智能材料中的光纤传感系统 49 光纤传感器在光纤光缆中的使用 光缆通讯在我国已有20多年的使用史,这段前 史也即是光通讯技能的发展史和光纤光缆的发展史。 光纤光缆在我国的发展能够分为这样几个阶段:对 光缆
33、可用性的讨论;替代市内局间中继线的市话电 缆和PCM电缆;替代有线通讯干线上的高频对称电 缆和同轴电缆。这两个替代应该说是完成了;现正 在替代接入网的主干线和配线的市话主干电缆和配 线电缆,并正在进入局域网和室内归纳布线体系。 当前,光纤光缆已经进入了有线通讯的各个范畴, 包括邮电通讯、播送通讯、电力通讯和军用通讯等 范畴。 第3章 智能材料中的光纤传感系统 50 光纤传感器在智能大桥中的使用 它是将传感元件、驱动元件以及信息处置操控 体系集成于主体材猜中 ,使制成的构件不仅具有承 受载荷、传递运动的能力 ,而且具有检测多种参数 (如应力、应变、损伤、温度、压力等 )、剖析、处 置及操控等多种
34、功用。它出现时刻不长 ,但已成为 当前国内外研究的热门。具有智能资料布局特点的 智能桥梁能对智能资料布局的动作流程图桥梁的施 工质量、运营中的应力情况以及其它多种参数进行 长时间实时在线监测 ,并依据对大量传感信息的实 时归纳剖析采取恰当、及时的操控措施 ,因而能够 极大地提高工程布局的安全性和可靠性 ,避免灾难 性事故的发作。 第3章 智能材料中的光纤传感系统 51 v2、在电力工业中的使用 光纤光栅传感器因不受电磁场搅扰和可 完成长距离低损耗传输,从而成为电力工业 使用的选择。电线的载重量、变压器绕线的 温度、大电流等都可使用光纤光栅传感器丈 量。 第3章 智能材料中的光纤传感系统 52
35、v3、在医学中的使用 光纤光栅传感器还可用来丈量心脏的效 率。在这种方法中,医生把嵌有光纤光栅的 热稀释导管刺进患者心脏的右心房,并注射 人一种冷溶液,可丈量肺动脉血液的温度, 结合脉功率就可晓得心脏的血液输出量,这 关于心脏监测是非常重要的。 第3章 智能材料中的光纤传感系统 53 v4、在航天器及船只中的使用 先进的复合资料抗疲劳、抗腐蚀功用较 好,而且能够减轻船体或航天器的重量,关 于疾速航运或飞翔具有重要意义,因而复合 资料越来越多地被用于制作航空帆海东西(如 飞机的机翼)。 为全面衡量船体的情况,需求 晓得其不一样部位的变形力矩、剪切压力、 甲板所受的打击力,关于一般船体大概需求 1
36、00个传感器,因而波长复用能力极强 的光 纤光栅传感器最适合于船体检测。 第3章 智能材料中的光纤传感系统 54 v5、在化学传感中的使用 光纤光栅传感器可用于化学传感,因为 光栅的中心波长随折射率的改变而改变,而 光栅间倏sh逝波(指由于全反射而在两种 不同介质的分界面上产生的一种电磁波 )的 相互作用以及环境中的化学物质的浓度改变 都会导致折射率的改变。 第3章 智能材料中的光纤传感系统 谢谢! 55 第3章 智能材料中的光纤传感系统 56 v微细的光纤封装在塑料护套中,使得它能够弯曲而不至于断 裂。通常,光纤的一端的发射装置使用发光二极管(light emitting diode,LED
37、)或一束激光将光脉冲传送至光纤,光 纤的另一端的接收装置使用光敏元件检测脉冲 。 v在日常生活中为什么光纤被用作长距离的信息传递? v通常光纤与光缆两个名词会被混淆。多数光纤在使用前必须 由几层保护结构包覆,包覆后的缆线即被称为光缆。光纤外 层的保护层和绝缘层可防止周围环境对光纤的伤害,如水、 火、电击等。 光缆分为:缆皮、芳纶丝、缓冲层和光纤。 光纤:同轴电缆相似,只是没有网状屏蔽层。中心是光传播 的玻璃芯。 第3章 智能材料中的光纤传感系统 57 装有智能蒙皮的战斗机具有如下优点: (1)用于武器装备外壳的先进复合材料加工成型过程中随时监 测热压成型工艺中复合材料的温度和固化程度,提高了材料使 用的可靠度,并可避免安全设计余量过大而造成的浪费和整机 质量的增加,这一直是航空设计领域的难题; (2)起飞前自动进行
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年环保设备行业竞争态势与产品创新模式探索报告
- 清吧员工合同协议书
- 合同协议书制作教程视频
- 扶棚合同协议书
- 银行卫生合同协议书
- 教学合同协议书
- 车库翻板门合同协议
- 2023年2024年演出经纪人之演出经纪实务考试题库带答案(考试直接用) (一)
- 湿地烧烤面试题及答案
- 针对2024年纺织品设计师考试的复习要点试题及答案
- 《工业机器人现场编程》课件-任务3.涂胶机器人工作站
- 程序设计高级应用(Java程序设计)知到智慧树章节测试课后答案2024年秋山东劳动职业技术学院
- 《大气污染物综合排放标准》编制说明
- 2025年教师资格考试高级中学学科知识与教学能力物理试题与参考答案
- 养老机构入住潜在风险告知书1-3-5
- 北京四中2025届高一物理第一学期期中经典试题含解析
- 山西煤矸石综合开发利用项目可行性研究报告
- 《剪映专业版:短视频创作案例教程(全彩慕课版)》 课件 第5章 创作城市宣传片
- 手术分级目录(2023年修订)
- 期中 (试题) -2024-2025学年人教PEP版(2024)英语三年级上册
- 企业名称:个人防护用品(PPE)管理规定
评论
0/150
提交评论