




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 3.1 空间汇交力系 y x z F Fx Fy Fz i k j 若已知力与正交坐标系Oxyz三轴间夹角,则用直接投影法 cos(, ) cos(, ) cos(, ) x y z FF FF FF F i F j F k 1 力在直角坐标轴上的投影 y x z F Fx Fy Fz Fxy j g 当力与坐标轴Ox 、Oy间的夹角不易确定时,可把力F先投影到 坐标平面Oxy上,得到力Fxy,然后再把这个力投影到x 、y轴上, 这叫间接投影法。 sincos sinsin cos x y z FF FF FF gj gj g 3.1 空间汇交力系 3.1 空间汇交力系 例3-1 已知:,
2、n F 求:力 在三个坐标轴上的投影. n F sin nz FFcos nxy FF sincossin nxyx FFF coscoscos nxyy FFF 解: (1)合成 将平面汇交力系合成结果推广得: R12 n i FFFFF 合力的大小和方向为: 222 R ()()() xyz FFFF RRR RRR cos(, ),cos(, ),cos(, ) y xz F FF FFF FiFjFk 2 空间汇交力系的合成与平衡 Rxyz FFF Fijk 或 3.1 空间汇交力系 (2)平衡 空间汇交力系平衡的必要与充分条件是:该力系的 合力等于零。 R 0 i FF 以解析式表示
3、为:0 0 0 x y z F F F 空间汇交力系平衡的必要与充分条件是:该力系中所有 各力在三个坐标轴上的投影的代数和分别等于零。 3.1 空间汇交力系 3.1 空间汇交力系 例3-3 已知:物重P=10kN,CE=EB=DE; 0 30 求:杆受力及绳拉力 解:画受力图,列平衡方程 0 x F 045sin45sin 21 FF 0 y F 030cos45cos30cos45cos30sin 21 FFFA 0 z F 030cos30sin45cos30sin45cos 21 PFFF A 12 3.54kNFF8.66kN A F 3.2 力对点的矩和力对轴的矩 1 力对点的矩以矢
4、量表示力矩矢 MO(F) x y z O F r A(x,y,z) h B 空间力对点的矩的作用效果取决于: 力矩的大小、转向和力矩作用面方位。 这三个因素可用一个矢量MO(F)表示,如图。 其模表示力矩的大小; 指向表示力矩在其作用面内的转向(符 合右手螺旋法则); 方位表示力矩作用面的法线。 由于力矩与矩心的位置有关,所以力矩矢的始端一定在矩心O处, 是定位矢量。 以r表示力作用点A的矢径,则 ()O MFrF 以矩心O为原点建立坐标系,则 xyz xyz FFF rijk Fijk x y z O F MO(F) r A(x,y,z) h B j i k 3.2 力对点的矩和力对轴的矩
5、() ()()() O xyz zyxzyx xyz FFF yFzFzFxFxFyF ijk MFrF = ijk 3.2 力对点的矩和力对轴的矩 ( )()() () Oxyz MFrFxiyjzkF iF jF k ( )()() () Oxyz MFrFxiyjzkF iF jF k () ()()() O xyz zyxzyx xyz FFF yFzFzFxFxFyF ijk MFrF = ijk 力矩矢MO(F)在三个坐标轴上的投影为 () () () O xzy O yxz O zyx yFzF zFxF xFyF MF MF MF x y z O F MO(F) r A(x,y
6、,z) h B j i k 3.2 力对点的矩和力对轴的矩 力F对z 轴的矩定义为: ()()2 zOxyxyOab MMF hA FF 力对轴的矩是力使刚体绕该轴转动效果 的度量,是一个代数量,其绝对值等于 力在垂直于该轴平面上的投影对于轴与 平面交点的矩。 2 力对轴的矩 x y z O F Fxy h B A a b 符号规定:从z轴正向看,若力使刚体逆时针转则取正号,反之 取负。也可按右手螺旋法则确定其正负号。 3.2 力对点的矩和力对轴的矩 3.2 力对点的矩和力对轴的矩 由定义可知:(1)当力的作用线与轴平行或相交(共面)时,力对 轴的矩等于零。(2)当力沿作用线移动时,它对于轴的
7、矩不变。 ( )() zOxyxy MFMFFh 3.2 力对点的矩和力对轴的矩 例3-4 已知:,alF 求: , xyz MFMFMF co s x MFFla co s y MFF l sin z MFFla 解:把力 分解如图F 3 力对轴的矩的解析表达式 x y z O F Fx Fy Fz A(x,y,z) B Fx Fy Fxy a b x y ()() ()() zOxy OxOy yx MM MM xFyF FF FF 设力F沿三个坐标轴的分量分别为Fx、Fy、 Fz。力作用点A的坐标为(x、y、z),则 同理可得其它两式。故有 () () () xzy yxz zyx My
8、FzF MzFxF MxFyF F F F 3.2 力对点的矩和力对轴的矩 比较力对点的矩和力对轴的矩的解析表达式得: 即:力对点的矩矢在通过该点的某轴上的投影,等于力 对该轴的矩。 4 力对点的矩与力对过该点的轴的矩的关系 ()() ()() ()() O xx O yy O zz M M M MFF MFF MFF 3.2 力对点的矩和力对轴的矩 3.3 空间力偶 1 1、力偶矩以矢量表示力偶矩矢、力偶矩以矢量表示力偶矩矢 1212 FFFF 空间力偶的三要素空间力偶的三要素 (1 1) 大小:力与力偶臂的乘积;大小:力与力偶臂的乘积; (3 3) 作用面:力偶作用面。作用面:力偶作用面。
9、 (2 2) 方向:转动方向;方向:转动方向; BA MrF 3.3 空间力偶 ( ,)( )() OOO AB MF FMFMF rFrF ( ,)() OAB MF FrrFM 2 2、力偶的性质、力偶的性质 FF (2 2)力偶对任意点取矩都等于力偶矩,不因矩心的改)力偶对任意点取矩都等于力偶矩,不因矩心的改 变而改变。变而改变。 (1(1)力偶中两力在任意坐标轴上投影的代数和为零)力偶中两力在任意坐标轴上投影的代数和为零 . . 3.3 空间力偶 (3 3)只要保持力偶矩不变,力偶可在其作用面内)只要保持力偶矩不变,力偶可在其作用面内 任意移转,且可以同时改变力偶中力的大小任意移转,且
10、可以同时改变力偶中力的大小 与力偶臂的长短,对刚体的作用效果不变与力偶臂的长短,对刚体的作用效果不变. . 12 12 111 (,)() (,) RRBARBA BABA BA M FFrFrFF rFrF rFM F F = = = = 3.3 空间力偶 (4)(4)只要保持力偶矩不变,力偶可从其所在平面移至只要保持力偶矩不变,力偶可从其所在平面移至 另一与此平面平行的任一平面,对刚体的作用效果不另一与此平面平行的任一平面,对刚体的作用效果不 变变. . 211 FFF 332 FFF = = = = = = = 3.3 空间力偶 (5)(5)力偶没有合力,力偶只能由力偶没有合力,力偶只能
11、由 力偶来平衡。力偶来平衡。 力偶矩相等的力偶等效力偶矩相等的力偶等效 力偶矩矢是自由矢量力偶矩矢是自由矢量 3.3 空间力偶 由力偶的性质可知:力偶的作用效 果取决于力偶矩的大小、力偶转向和作 用面方位。因此可用一矢量M表示:选 定比例尺,用M的模表示力偶矩的大小; M的指向按右手螺旋法则表示力偶的转 向;M的作用线与力偶作用面的法线方 位相同。如图所示。M称为力偶矩矢。 力偶矩矢为一自由矢量。 空间力偶的等效条件是:两个力偶的力偶矩矢相等。 F M F 3 3、力偶的矢量表示、力偶的矢量表示 4 4、空间力偶等效定理、空间力偶等效定理 3.3空间力偶 5 5、力偶系的合成与平衡条件、力偶系
12、的合成与平衡条件 111222 ,., nnn MrF MrFMrF = = = i MM M 为合力偶矩矢,等于各分力偶矩矢的矢量和为合力偶矩矢,等于各分力偶矩矢的矢量和. . 3.3 空间力偶 222 ()()() xyz MMMM 6 6、合力偶矩矢的大小和方向余弦、合力偶矩矢的大小和方向余弦 , xxyyzz MMMMMM 3.3 空间力偶 M M kM M M jM M M iM zyx ),cos(),cos(),cos( 空间力偶系可以合成一合力偶,所以空间力偶系平衡的必 要与充分条件是:合力偶矩矢等于零。即: 0 i MM 因为: 222 ()()() xyz MMMM 所以:
13、 0 0 0 x y z M M M 上式即为空间力偶系的平衡方程。 7 7、空间力偶系的平衡、空间力偶系的平衡 3.3空间力偶 例3-5 已知:在工件四个面上同时钻5个孔,每个孔所受切削 力偶矩均为80Nm. 求:工件所受合力偶矩在x、y、z轴上的投影。 解:把力偶用力偶 矩矢表示,平行移 到点A . mN1 .19345cos45cos 543 MMMMM ixx mN802MMM iyy mN1 .19345cos45cos 541 MMMMM izz 3.3空间力偶 求:轴承A,B处的约束力. 例3-6 已知:两圆盘半径均为200mm,AB =800mm,圆盘面O1 垂直于z轴,圆盘面
14、O2垂直于x轴,两盘面上作用有力 偶,F1=3N, F2=5N,构件自重不计. 解:取整体,受力图如图所示. 0 x M2 4008000 Az FF 0 z M 1 4008000 Ax FF N5 . 1 BxAx FFN5 . 2 BzAz FF 3.3空间力偶 空间力系向点O简化得到一空间汇交力系和一空间力偶系,如图。 ()(1,2, ) ii iO i in FF MMF 3.4 空间力系向一点的简化主矢与主矩 Fn F1 F2 y z x O F1 Fn F2 Mn M2 M1 z y x O MO FR O x y z 1 空间任意力系向一点的简化 空间汇交力系与空间力偶系等效代
15、替一空间任意力系。 空间汇交力系可合成一合力FR: Rii FFF 力系中各力的矢量和称为空间力系的主矢。 主矢与简化中心的位置无关。 MO FR O x y z 空间力偶系可合成为一合力偶,其矩矢MO: 力系中各力对简化中心之矩矢的矢量和称为力系对简化中心的主 矩。主矩与简化中心的位置有关。 ()OO i MMF 3.4 空间力系向一点的简化主矢与主矩 ( )( )( ) Oxyz MMF iMF jMF k 由力对点的矩与力对轴的矩的关系,有 空间力系向任一点空间力系向任一点O简化,可得一力简化,可得一力 和一力偶,这个力的大小和方向等和一力偶,这个力的大小和方向等 于该力系的主矢,作用线
16、通过简化于该力系的主矢,作用线通过简化 中心中心O;这个力偶的矩矢等于该力系;这个力偶的矩矢等于该力系 对简化中心的主矩。对简化中心的主矩。 空间力系向一点的简化结论空间力系向一点的简化结论 3.4 空间力系向一点的简化主矢与主矩 2 空间任意力系的简化结果分析 空间任意力系向一点简化的结果可能出现四种情况: 3.4 空间力系向一点的简化主矢与主矩 (1) FR0,MO0 ; (2) FR 0,MO 0 ; (3) FR 0,MO0 ; (4) FR0,MO 0 1) 空间任意力系简化为一合力偶的情形 FR0,MO0 FR 0,MO 0 2) 空间任意力系简化为一合力的情形 3.4 空间力系向
17、一点的简化主矢与主矩 简化结果为一个与原力系等效的合力偶,其合力偶矩矢等于 对简化中心的主矩。此时力偶矩矢与简化中心位置无关。 这时得一与原力系等效的合力,合力的作用线过简化中心O, 其大小和方向等于原力系的主矢。 这时亦得一与原力系等效的合力,其大小和方向等于原力系的 主矢,合力的作用线离简化中心O的距离为 R O d F M FR 0,MO0 ,且FR MO MO FR O FRFR FR O O d FR O O 3.4 空间力系向一点的简化主矢与主矩 ()( ) ORORO MdFMFMF 合力矩定理:合力对某点(轴)之矩等于各分力对同一点(轴) 之矩的矢量和。 FR 0,MO0 ,且
18、FR MO MO FR O O FR 3) 空间任意力系简化为力螺旋的情形 3.4 空间力系向一点的简化主矢与主矩 此时无法进一步合成,这就是简化的最后结果。这种力与力偶 作用面垂直的情形称为力螺旋。FR与MO同方向时,称为右手 螺旋; FR与MO反向时,称为左手螺旋。图示为一右手螺旋。 FR 0,MO0 ,同时两者既不平行,又不垂直,此时可将MO 分解为两个分力偶MO和MO,它们分别垂直于FR和平行于FR, 则MO和FR可用作用于点O的力FR来代替,最终得一通过点O 的力螺旋。 MO FR O M O FR O MOFR O O MO 3.4 空间力系向一点的简化主矢与主矩 4) 空间任意力
19、系简化为平衡的情形 当空间任意力系向一点简化时出现 主矢FR0,主矩MO 0 , 这是空间任意力系平衡的情形。 3.4 空间力系向一点的简化主矢与主矩 3.5 空间任意力系的平衡方程 1 空间任意力系的平衡方程 空间任意力系平衡的必要与充分条件为:力系 中各力在三个坐标轴上投影的代数和等于零, 且各力对三个轴的矩的代数和也等于零。上式 即为空间任意力系的平衡方程。 空间任意力系平衡的充要条件: 000 xyz FFF 000 xyz MMM 该力系的主矢、主矩分别为零. 000 zxy FMM 空间平行力系的平衡方程 3.5 空间任意力系的平衡方程 2 空间约束类型 3.5 空间任意力系的平衡
20、方程 3.5 空间任意力系的平衡方程 3.5 空间任意力系的平衡方程 例3-7 已知:P=8kN,P1=10KN,各尺寸如图, 求:A、B、C 处约束力。 解:研究对象:小车 列平衡方程 0 z F 0 1 DBA FFFPP 0 FM x 1 0.21.220 D PPF 0 FM y 06 . 02 . 16 . 08 . 0 1 DB FFPP 5.8kN,7.777kN,4.423kN DBA FFF 3.5 空间任意力系的平衡方程 0 y F 例3-8 已知:,2000NF ,2 12 FF ,60,30 各尺寸如图,求:F1、F2及A、B处的约束力。 解:研究对象,曲轴 列平衡方程
21、 0 x F 060sin30sin 21 BxAx FFFF 00 3.5 空间任意力系的平衡方程 0 z F060cos30cos 21 BzAz FFFFF 0 FM x 040020020060cos20030cos 21 Bx FFFF 0 FM y 0 2 12 FF D RF 0 FM z 12 (sin30sin60 ) 2004000 Bx FFF 3.5 空间任意力系的平衡方程 ,6000,3000 21 NNFF ,9397,1004NN AzAx FF ,1799,3348NN BzBx FF 3.5 空间任意力系的平衡方程 例3-9 已知: 4.25N, x F 6.
22、8N, y F 17N, z F ,36. 0 FFr50mm,R 30mmr 各尺寸如图 求:(2)A、B处约束力(3)O 处约束力 , r F F (1) 3.5 空间任意力系的平衡方程 0 x F 0 xAxBx FFFF 0 y F 0 yBy FF 0 z F 0 zAzBz FFFF 0 FM x 48876763880 Bzz FFF 0 FM y 0rFRF z 0 FM z 7648876303880 rBxyx FFFF 解:研究对象1:主轴及工件,受力图如图 3.5 空间任意力系的平衡方程 又:,36. 0 FFr ,2 .10 kN F3.67, r F kN ,64.
23、15kN Ax F ,87.31kN Az F ,19. 1kN Bx F,8 . 6 kN By F,2 .11 kN Bz F 研究对象2:工件受力图如图 列平衡方程 0 x F0 xOx FF 0 y F 0 yOy FF 0 z F0 zOz FF 3.5 空间任意力系的平衡方程 0 FM x 0100 xZ MF 0 FM y 030 yZ MF 0 FM z 030100 zyx MFF kNkNkN17,8 . 6,25. 4 OzOyOx FFF mkNmkNmkN22. 0,51. 0,7 . 1 zyx MMM 3.5 空间任意力系的平衡方程 D By z FBz FBy
24、F FAz Fz Fy A yz平面 B y x D AFBy FBx Fr FAxFx Fy xy平面 yz平面 xy平面 xz平面 x z Fr x z F Fz Fx FAx+ FBx FAz+ FBz xz平面 平面解法平面解法 3.5 空间任意力系的平衡方程 附例1. 一等边三角形板边长为a , 用六根杆支承成水平位置如图 所示.若在板内作用一力偶其矩为M。求各杆的约束反力。 AB C 1 6 4 2 5 3 30o 30o 30o A B C M 解:取等边三角形板为研 究对象画受力图。 AB C 1 6 4 2 5 3 30o 30o 30o A B C M S1 S2 S3 S
25、4 S5 S6 6 ()0 33 0 22 BB M MaS F a M S 3 4 6 4 33 ()0,0 22 CC MMaS F a M S 3 4 4 5 33 ()00 22 AA MMaS F a M S 3 4 5 3.5 空间任意力系的平衡方程 3.5 空间任意力系的平衡方程 14 ()0 331 0 222 BC M a SaS F a M S 3 2 1 25 331 ()00 222 AC Ma SaSF a M S 3 2 2 36 331 ()00 222 AB Ma SaSF a M S 3 2 3 AB C 1 6 4 2 5 3 30o 30o 30o A B
26、 C M S1 S2 S3 S4 S5 S6 3.5 空间任意力系的平衡方程 x m3 m2 m3m2 A B CD 60 60 45 45 G H y z P 附例2. 扒杆如图所示,立柱 AB用BG和BH两根缆风绳拉住, 并在A点用球铰约束,A、H、 G三点位于 xy平面内,G、H两 点的位置对称于y轴,臂杆的D 端吊悬的重物重P=20kN;求两 绳的拉力和支座A的约束反力。 解:以立柱和臂杆组成的系统为研 究对象,受力如图,建立如图所示 的坐标。 列平衡方程: 3.5 空间任意力系的平衡方程 A B C D 60 60 45 45 G H y z P A X A Y A Z G T H
27、T 045sin60cos45sin60cos:0 GHA TTXX 045cos60cos45cos60cos:0 GHA TTYY 060sin60sin:0PTTZZ GHA 05545cos60cos545cos60cos:0)(PTTFm GHx 0545sin60cos545sin60cos:0)( GHy TTFm 联立求解得: kNTT HG 3 .28 0 A X kNYA20 kNZA69 附例3:已知:铅直力F,板和杆重不 计。求各杆的内力。 5 4 6 32 1 F 500mm 1000mm D C B A D C B A 1000mm 500mm 1000mm 3.5
28、 空间任意力系的平衡方程 3.5 空间任意力系的平衡方程 解:以平板ABCD为研对,画出受力图 S5 S4 S6 S3S2 S1 F 500mm 1000mm D C B A D C B A ()0 DD m F0 2 S ()0 BB m F0 4 S ()0 CC m F 0 6 S ()0 BC m F ()0 AB m F 0500500 1 FSFS 1 010001000 5 FSFS 5 ()0 AD m F 0500500 53 SSFS 3 3.5 空间任意力系的平衡方程 x y z AB C D E 30 30 G 附例4. 均质长方形板ABCD重G=200N, 用球形铰链
29、A和碟形铰链B固定在墙上,并 用绳EC维持在水平位置,求绳的拉力和支 座的反力。 x y z AB C D E 30 30 G A X A Y A Z T B X B Z 030sin:0)( 2 1 ABGABZABTFm Bx 030sin:0)( 2 1 ADTADGFmy 0:0)(ABXFm Bz 解:以板为研究对象,受力如图, 建立如图所示的坐标。 3.5 空间任意力系的平衡方程 x y z AB C D E 30 30 G A X A Y A Z T B X B Z 030sin30cos:0 TXXX BA 030cos:0 2 TYY A 030sin:0GTZZZ BA 解
30、之得:0 BB ZX NT200NX A 6 .86 NYA150 NZ A 100 1平行力系中心 平行力系中心是平行力系合力通 过的一个点。平行力系合力作用点的 位置仅与各平行力的大小和作用点的 位置有关,而与各平行力的方向无关。 称该点为此平行力系的中心。 3.6 重心 F1 FR F2 y z x O A C B r1 rC r2 i i C i F F r r , iiiiii CCC iii F xF yF z xyz FFF 根据合力矩定理,有 nncR rFrFrFrF 2211 同理,有 重力是地球对物体的吸引力,如果将物 体由无数的质点组成,则重力便构成空 间汇交力系。由于
31、物体的尺寸比地球小 得多,因此可近似地认为重力是个平行 力系,这力系的合力就是物体的重量。 不论物体如何放置,其重力的合力的作 用线相对于物体总是通过一个确定的点, 这个点称为物体的重心。 2 重心 3.6 重心 1122 . Cnn ii P xP xP xP x P x ii C Px x P 1122 . Cnn ii P yP yPyPy P y ii C Py y P 3.6 重心 1122 . Cnn ii P zP zP zP z P z ii C Pz z P 计算重心坐标的公式为计算重心坐标的公式为 ii C Pz z P ii C Px x P ii C Py y P 对均质物体,均质板状物体,有对均质物体,均质板状物体,有 ii C Vx x V ii C V y y V i i C Vz z V ii C Ax x A ii C Ay y A i i C Az z A 称为重心或形心公式称为重心或形心公式 3 确定物体重心的方法 (1) 简单几何形状物体的重心 如果均质物体有对称面,或对称轴,或对称中心,则该物体的 重心必相应地在这个对称面,或对称轴,或对称中心上。简单 形状物体的重心可从工程手册上查到。 3.6
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 计量仪器采购合同
- 河北省唐山市丰润区2024-2025学年三年级下学期期末数学试题
- 烹饪营养与卫生(第3版)-课件 6.项目三任务二.科学配餐与食谱编制(一)
- 幽默的安全规程讲解培训课件
- 2025年宏观经济展望分析报告:“新秩序”的萌芽
- 岩石书课件教学
- 尾矿工安全培训课件
- 存量房买卖居间服务绿色环保合同
- 电商平台工商股权转让与物流配送协议
- 企业多元化培训方案定制合同
- 厨房6S管理培训
- 锂电池pack生产线可行性报告
- 2025年政府机关《干部履历表》标准模板
- 临床常用他评量表
- 【MOOC】实验室安全学-武汉理工大学 中国大学慕课MOOC答案
- (新版)海事集装箱装箱检查员考试题库及答案
- 车位租赁协议
- 中建《质量标准化管理手册》水利水电工程
- 客户经理招聘笔试题及解答(某大型国企)2024年
- 幼教培训课件:《幼儿园科学核心经验与活动指导》
- 大学语文17北方省公开课金奖全国赛课一等奖微课获奖课件
评论
0/150
提交评论