2021-2022学年高中数学 3 圆锥曲线的方程 3.3.2 第1课时 抛物线的简单几何性质课后素养落实新人教A版选择性必修第一册_第1页
2021-2022学年高中数学 3 圆锥曲线的方程 3.3.2 第1课时 抛物线的简单几何性质课后素养落实新人教A版选择性必修第一册_第2页
2021-2022学年高中数学 3 圆锥曲线的方程 3.3.2 第1课时 抛物线的简单几何性质课后素养落实新人教A版选择性必修第一册_第3页
2021-2022学年高中数学 3 圆锥曲线的方程 3.3.2 第1课时 抛物线的简单几何性质课后素养落实新人教A版选择性必修第一册_第4页
2021-2022学年高中数学 3 圆锥曲线的方程 3.3.2 第1课时 抛物线的简单几何性质课后素养落实新人教A版选择性必修第一册_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022学年高中数学 3 圆锥曲线的方程 3.3.2 第1课时 抛物线的简单几何性质课后素养落实新人教a版选择性必修第一册2021-2022学年高中数学 3 圆锥曲线的方程 3.3.2 第1课时 抛物线的简单几何性质课后素养落实新人教a版选择性必修第一册年级:姓名:课后素养落实(二十九)抛物线的简单几何性质(建议用时:40分钟)一、选择题1若抛物线y24x上一点p到x轴的距离为2,则点p到抛物线的焦点f的距离为()a4b5c6d7a由题意,知抛物线y24x的准线方程为x1,抛物线y24x上一点p到x轴的距离为2,则p(3,2),点p到抛物线的准线的距离为314,点p到抛物线的焦点f的

2、距离为4.故选a2f是抛物线y22x的焦点,a,b是抛物线上的两点,|af|bf|8,则线段ab的中点到y轴的距离为()a4b c3dd抛物线y22x的焦点f,准线方程为x.设a(x1,y1),b(x2,y2),根据抛物线的定义得|af|bf|x1x28,所以x1x27,所以线段ab中点的横坐标为,所以线段ab的中点到y轴的距离为.故选d3过抛物线y24x的焦点作一条直线与抛物线相交于a,b两点,它们的横坐标之和等于5,则这样的直线()a有且仅有一条b有且仅有两条c有无穷多条d不存在b由抛物线性质知|ab|527,当线段ab与x轴垂直时,|ab|min4,这样的直线有两条4抛物线y24x与直线

3、2xy40交于两点a与b,f是抛物线的焦点,则|fa|fb|等于()a2b3 c5d7d设a(x1,y1),b(x2,y2),则|fa|fb|x1x22.由得x25x40,x1x25,x1x227.5已知直线l过抛物线c的焦点,且与c的对称轴垂直,l与c交于a,b两点,|ab|12,p为c的准线上的一点,则abp的面积为()a18b24 c36d48c不妨设抛物线方程为y22px(p0),依题意,lx轴,且焦点f,当x时,|y|p,|ab|2p12,p6,又点p到直线ab的距离为p6,故sabp|ab|p12636.二、填空题6直线yx1被抛物线y24x截得的线段的中点坐标是_(3,2)将yx

4、1代入y24x,整理,得x26x10.由根与系数的关系,得x1x26,3,2.所求点的坐标为(3,2)7已知f是抛物线c:y28x的焦点,m是c上一点,fm的延长线交y轴于点n.若m是fn的中点,则|fn|_.6如图,过点m作mmy轴,垂足为m,|of|2,m为fn的中点,|mm|1,m到准线距离d|mm|3,|mf|3,|fn|6.8已知点a到点f(1,0)的距离和到直线x1的距离相等,点a的轨迹与过点p(1,0)且斜率为k的直线没有交点,则k的取值范围是_(,1)(1,)依题意得点a的轨迹为抛物线y24x.过点p(1,0)且斜率为k的直线方程为yk(x1),由得ky24y4k0,当k0时,

5、显然不符合题意;当k0时,依题意得(4)24k4k0,解得k1或k0),设a(x0,y0),由题意知m,|af|3,y03,|am|,x17,x8,代入方程x2py0得,82p,解得p2或p4.所求抛物线的标准方程为x24y或x28y.10已知抛物线c:y2x2和直线l:ykx1,o为坐标原点(1)求证:l与c必有两交点(2)设l与c交于a,b两点,且直线oa和ob斜率之和为1,求k的值解(1)证明:联立抛物线c:y2x2和直线l:ykx1,可得2x2kx10,所以k280,所以l与c必有两交点(2)设a(x1,y1),b(x2,y2),则1,将y1kx11,y2kx21,代入,得2k1,由(

6、1)可得x1x2,x1x2,代入得k1.1从抛物线y24x上一点p引抛物线准线的垂线,垂足为m,且|pm|5,设抛物线的焦点为f,则pmf的面积为()a5b10 c20db设p(x0,y0),则|pm|x015,解得x04,则y4416,则|y0|4,故smpf5|y0|10.故选b2设抛物线c:y24x的焦点为f,直线l过点m(2,0)且与c交于a,b两点,|bf|.若|am|bm|,则实数()ab2 c4d6c由题意得抛物线的焦点为f(1,0),准线为x1,由|bf|及抛物线的定义知点b的横坐标为,代入抛物线方程得b.根据抛物线的对称性,不妨取b,则直线l的方程为y(x2),联立得a(8,

7、4),于是4.故选c3直线yx3与抛物线y24x交于a,b两点,过a,b两点向抛物线的准线作垂线,垂足分别为p,q,则梯形apqb的面积为_48由消去y得x210x90,得x1或9,即或所以|ap|10,|bq|2或|bq|10,|ap|2,所以|pq|8,所以梯形apqb的面积s848.4已知抛物线c的顶点在原点,焦点在x轴上,且抛物线上有一点p(4,m)到焦点的距离为6.则抛物线c的方程为_;若抛物线c与直线ykx2相交于不同的两点a,b,且ab中点横坐标为2,则k_.y28x2由题意设抛物线方程为y22px,其准线方程为x,根据定义可得46,所以p4,所以抛物线c的方程为y28x.由消去y,得k2x2(4k8)x40.由k0,64(k1)0,解得k1且k0.又2,解得k2或k1(舍去),所以k的值为2.点m(m,4)(m0)为抛物线x22py(p0)上一点,f为其焦点,已知|fm|5.(1)求m与p的值(2)以m点为切点作抛物线的切线,交y轴于点n,求fmn的面积解(1)由抛物线定义知,|fm|45,所以p2.所以抛物线的方程为x24y,又由m(m,4)在抛物线上,所以m4.故p2,m4.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论