人教版八年级数学下册二次根式的知识点汇总(超值哦)_第1页
人教版八年级数学下册二次根式的知识点汇总(超值哦)_第2页
人教版八年级数学下册二次根式的知识点汇总(超值哦)_第3页
人教版八年级数学下册二次根式的知识点汇总(超值哦)_第4页
人教版八年级数学下册二次根式的知识点汇总(超值哦)_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、二次根式的知识点汇总知识点一:二次根式的概念形如g (白之0)的式子叫做二次根式 注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以是而为二次根式的前提条件,如 加,4为, 斤!5二1)等是二次根式,而 后,s 等都不是二次根式。例1.下列式子,哪些是二次根式,哪些不是二次根式:72、狗、1、百(x0)、瓜、 x4/2、-亚、jx_y (x0, y?a0). x y分析:二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0.知识点二:取值范围1、 二次根式有意义的条件:由二次根式的意义可知,当 a三0时,启有意义,是

2、二 次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。2、二次根式无意义的条件:因负数没有算术平方根,所以当a v 0时,口没有意义。例2.当x是多少时,依x 1在实数范围内有意义?例3.当x是多少时,反飞+工在实数范围内有意义?x 1知识点三:二次根式 几(。之0)的非负性& (。之0)表示a的算术平方根,也就是说, 几 辞之)是一个非负数,即 面之0 产口)。注:因为二次根式 短(三。)表示a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数(之。)的算术平方根是非负数,即 0之0 (加之。),这个 性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似

3、。这个性质在解答题目 时应用较多,如若 国+疵=。,则a=0,b=0;若点+bi=。,则a=0,b=0;若石+1=0 ,则 a=0,b=0。例 4(1)已知 y=kx+5,求上的值.(2)若v0f+而7=0,求 a2004+b2004 的值 y知识点四:二次根式(口的性质(2)文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。注:二次根式的性质公式 即(厘之。)是逆用平方根的定义得出的结论。上面的公式 也可以反过来应用:若/0,则&=(向: 如:2r丁e).例1计算1 .(岛22. (375) 23. (j5) 24. w)2,262例2在实数范围内分解下列因式:(1) x2-3 x

4、4-4(3) 2x2-3知识点五:二次根式的性质1(00)文字语言叙述为:一个数的平方的算术平方根等于这个数的绝对值。注:1、化简值时,一定要弄明白被开方数的底数 a是正数还是负数,若是正数或0,则等于 a本身,即后二卜|“(曰20);若a是负数,则等于a的相反数-a,即必二同二-僦。);2、中的a的取值范围可以是任意实数,即不论 a取何值,而一定有意义;3、化简时,先将它化成同,再根据绝对值的意义来进行化简。例1化简(1)加 (2) 7t4)2 (3)底 (4) jtw例2填空:当ano时,oa=_;当aa,则a是什么数?例 3 当 x2,化简 j(x 2)2 -j(1 2x)2 .知识点六

5、:(及了与旧的异同点1、不同点:(伞?与表示的意义是不同的,(退尸表示一个正数a的算术平方根的平方, 而它表示一个实数a的平方的算术平方根;在(如,中之。,而中a可以是正实数,0,负实数。但(能了与用都是非负数,即(航 ,用之。因而它的运算的结果是有差别的,(加、虫训,而2、相同点:当被开方数都是非负数,即就30时,(向=;q0, bn0)反过来: 强=五而(a0, ba0)除法而=也(a0, b0)、.a反过来,jb =而(an0, b0)(思考:b的取值与a相同吗?为什么?不相同,因为 b在分母,所以不能为0)例1 .计算(1)4芯乂b(2) gx而3、 ) v9 x v27(4)旧 x

6、旗化简(1)/9l6 j16 81 79x2y2(4) ,54例3.判断下列各式是否正确,不正确的请予以改正:(1)j 4) ( 9)、1,3254 x 725 =4x j x1225/25 =4 4 ; x j25 =4 5/12 =8 翼 25例4.计算:(1)(3)例5.化简:(1)64b2 9a264(3)9x 64y26已知产6评i,且x为偶数,求(1+x)13、最简二次根式应满足的条件:(1)被开方数 不含分母或分母中不含二次根式;(2)被开方数中不含开得尽方的因数或因式(熟记20以内数的平方;因数或因式间是乘积的关系,当被开方数是整式时要先判断是否能够分解因式,然后再观察各个因式

7、的指数是否是2(或2的倍数),若是则说明含有能开方的因式,则不满足条件,就不是最简二次根式)例1 .把下列二次根式化为最简二次根式(1) 3点;(2) x2y4 x4y2 ; (3)眄亏34、化简最简二次根式的方法:(1)把被开方数(或根号下白代数式)化成积的形式、即分解因式;(2)化去根号内的分母(或分母中的根号),即分母有理化; 将根号内能开得尽方的因数(或因式)开出来.(此步需要特别注意的是:开到根号外的时候要带绝对值、注意符号问题)5.有理化因式:一般常见的互为有理化因式有如下几类:品与品 ;口 +而与厘-就;&+屈与&-忑 ;溶石+典柩与肉而一题而.说明:利用有理化因式的特点可以将分

8、母有理化.13、同类二次根式:被开方数相同的(最简)二次根式叫同类二次根式判断是否是同类二次根式时 务必.将各个根式都化为最简二次根式。如 参与历 知识点八:二次根式的加减1、二次根式的加减法:先把各个二次根式化为最简二次根式、再把被开方数相同的二次 根式(即同类二次根式)讲行合并。(合并方法为:将系数相加减.二次根式部分不变) 不酢合并的直接抄下来。例 1 .计算(1)而 + 而(2) v16x + v64x分析:第一步,将不是最简二次根式的项化为最简二次根式;第二步,将相同的最 简二次根式进行合并.解:(1)春 + &8=2应+3应=(2+3)短=5短(2) vl6x + /64x =4x

9、+ +8/x = (4+8) vx =12/x例2 .计算(1) 3廊-96+3辰(2)(闻 + 同)+ (712-75)例 3.已知 4x2+y2-4x-6y+10=0,求(2xv9x+y2 届)-(x2g-5xp)的值.3. yi x x2、二次根式的混合运算:先计算括号内,再乘方(开方),再乘除,再加减3、二次根式的比较:(1)若值上口,则有; (2)若,则有厘(3)将两个根式都平方,比较平方后的大小,对应平方前的大小例4.比较3/2与4新的大小知识点九:二次根式的运算:(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用 它的算术平方根代替而移到根号外面;如果被开方数是代数和的形式,那么先分解因式, 变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根 号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论