



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、一、知识点总结:1. 什么叫做有理数?m答:“整数和分数统称为有理数”.为了进一步理解有理数概念的内涵,有理数是形如7的数,其中 m, n都是整数且nHO.2. 数轴的三要素是什么?如何利用数轴上的点表示有理数?3. 什么叫做相反数?互为相反数的两个数有什么特征?4. 什么叫做一个数的绝对值?有理数的绝对值有什么性质?5. 如何比较两个有理数的大小?6. 有理数的加法、减法、乘法、除法的运算法则是什么?7. 乘方的意义和运算法则分別是什么?8. 如何正确进行有理数的混合运算?(用笔算和用讣算器算)9. 什么叫做近似数和有效数字?如何用科学记数法表示数?10. 你能举出有理数在实际应用中的2至3
2、个实例吗?11. 有理数集有哪些性质?答:有理数集具有以下的性质:(1) 四则运算的封闭性.在有理数的集合里,任何两个有理数的加、减、乘、除四种运算(除数不是零) 总可以进行.(2) 有理数集的顺序性.有理数集合是一个有序体,任何两个有理数总可以比较大小.(3) 有理数集的稠密性.不论a, b是怎样两个相异的有理数(ab),在a, b之间总存在无数多个有理 数.12. 在本章的学习过程中,运用了哪些数学思想?答:在有理数这一章的学习过程中,主要运用了以下三种数学思想.(1) 数形结合的思想用数轴上的点来表示有理数,利用数与点的对应,有利于把抽象的数的概念、性质及数量关系用几何 图形直观地表示,
3、反过来,数轴上点与点之间的位置关系又对应着有理数的概念和运算.利用数形结合, 可以使所要研究的问题化难为易,化繁为简.(2) 转化的思想在有理数一章的学习中,处处体现将所要研究和解决的问题变为已经学过的问题来处理.特別是有理 数的减法法则,除法法则集中体现这个思想.(3) 分类讨论的思想无论是有理数的绝对值、有理数的大小比较还是有理数四则运算法则都要将研究对象所有的各种情况 分别研究,得出相应的结论.在给岀分类的标准下,能将研究的对象不重不漏地加以分析、研究,对提高 我们的思维能力是十分重要的.二、有理数的加减运算重点、难点提示:1. 注意掌握有理数的加法法则,会使用运算律简算,并能解决简单的
4、实际问题。2. 注意掌握有理数的减法法则,认识减法与加法的内在联系,合理运算。3. 进一步巩固有理数加、减法法则的运算,能熟练地将加减混合运算,理解运算符号和性质符号的意 义,运用加法运算律合理简算,并会解决简单的实际问题。三、核心内容及例题选讲:(-)、有理数的加法1. 有理数加法法则有三条:(1) 同号两数相加,取相同的符号,并把绝对值相加:(2) 绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对 值,互为相反数的两个数相加得0。(3) -个数同0相加,仍得这个数。例1.计算下列各题(1) (+2)+ (+?)= + ( 2+7)二+9;(即 2+7=9
5、) (-2) + (-7)二 -(2+7) =-9.(2) (-4) + (+7)二 +(7-4)二+3: (+4) + (-7)= (7-4)二-3:(-4) + (+4)= 0.(3) 5+0=5:-5+0二-5:0+0=0.2. 注意事项:(1) 有理数加法法则是进行有理数加法的根本依据,它也是人为规左的。不过这个规左不仅符合实际, 并回答了过去用算术讣算方法不能解决的某些问题,而且这个规定(有理数加法法则)与算术里的加法法则 不矛盾。(2) 由于任何一个有理数都是由它的符号和绝对值两部分组成的,因此有理数加法法则的叙述中,都是 强调先确定和的符号,再计算和的绝对值。这样在进行加法运算时
6、,必须先判断两个加数的符号,是同号? 是异号?或是有一个加数为零,从而来确定用哪一条法则进行计算。(3) 在算式中一泄要分淸表示数的正、负的性质符号和表示加法运算的运算符号,并用括号分开。如: (-2) + (+5)、(+2) +(-5)、(-2) +(-5)等。(4) 可以证明,加法的交换律,加法的结合律在有理数范帀内仍然成立,因此,利用有理数加法的运算 律,有时可使计算简化。例2.计算下列各题。i+10l号才哙中S)分析:绝对值。讣算有理数的加法时,要仔细弄淸各个加数的特征,依据法则,先确左和的符号,再求岀和的解:宁S叫令沁斗还可以这样算:11113722-7-+10- = (-7) +
7、(-)+(+9) + (1-)=(-7) + (+9)+(-) + (+-) = 2+- = 2-冷+(壬討3)5中呵存啥一洛7- + (-3.8) + (-7.2) = 7-+(-7.2)+(-3.8) = 0 + (-3.8)=-3 庁5例3.计算(2.4) +(4.2) + (3居)+(+3.1) 4-(+0.8)4-(-0.7)解:(1) (一24) + (-42) + (-38) + (+3 l)+(+0.8)+(-0. 7)=(一2 4) + (-4 2) + (一3 8) + (-0. 7) + (+3. 1) + (+0. 8)二-(2 4+4. 2+3. 8+0. 7) +
8、(3.1+0. 8)=(-11.1) + (+3. 9) =-(11. 1-3. 9)二-7. 2.还可以这样算:(-2. 4) + (-4. 2) + (-3. 8) + (3. 1) + (0. 8) + (-0 7)= (-2.4) + (+3. 1) + (-0 7) + (-3. 8) + (0. 8) 1 + (-4. 2)=0+(-3) + (一4 2)二一7. 2.3 3552319112-+g + (-lg)+(- + (-4-)=2- + (-1-)+(-4-)=1- + (-5-) = -4小结:利用有理数的加法运算律,可使讣算简化,一般可考虑以下几点: 把相加得零的数结
9、合; 把相加得整数的数结合: 分数相加时,同分母分数结合; 把符号相同的数结合。(二)、有理数的减法1. 已知两个有理数的和及其中一个加数,求另一个加数的运算叫做有理数的减法由于有理数的减法是加法的逆运算,因此,求两个有理数的差,依据左义可转化为有理数的加法例 如计算(-2)-(-7).解:设(-2)-(-7)二x,则x+(-7)=-2.(想一想:什么数加上(-7)等于-2呢?)(+5) + (-7)二-2,. x二5 即(-2)-(-7) =5.虽然利用有理数的减法是加法的逆运算的关系,可以求出给左的两个有理数的差,但是计算的过程比 较复杂,能不能想一个办法使计算过程简化呢?在算式(-2)-
10、(-7)中,我们注意到-(-7)又表示为-7的相反数+7,而(-2)与(+7)的和恰好为+5,因此有 (-2)-(-7) = (-2)+(+7) =+5.2. 有理数减法的运算法则:减去一个数,等于加上这个数的相反数.例.计算:(1) (+5)-(+9)(2) (+5)-(-9)(3) (-5)-(+9)(4) (-5)-(-9)(5) 0-9 (6)9-0.分析:应依据有理数减法的运算法则进行计算解:(1) (+5)-(+9) = (+5) + (-9)=-4:(2) (+5) - (-9) = (+5) + (+9) =+14;(3) (-5) - (+9) = (-5) + (-9) =
11、-14;(4) (-5) - (-9) - (-5) + (+9) =+4:(5) 0-9二0+(-9)二-9;(6) 9-0=9+0=9.注意:(1)依据有理数减法法则进行减法运算的关键是如何正确地根据法则将减法转变为加法,再按有 理数的加法法则计算,特別是这里有两个符号的变化,即将运算符号“-”(减号)变为“ + ”(加号)的同时, 改变减数的性质符号(使减数变成它的相反数).(2) 虽然有理数减法的意义与算术中减法的意义相同,但它们的性质却截然不同.例 2.计算:(-72)-19-65.解法 1: (-72)-19-65= (-72) + (-19) -65= (-91) -65= (-
12、91) + (-65) =-156.解法 2: (-72)-19-65= (-72) - (19+65) = (-72) -84= (-72) + (-84) =-156.解法 3: (-72)-19-65= (-72) + (-19) + (-65)=- (72+19+65) =-156.注意:(1)在进行计算的过程中,一泄要分淸“+”、号在每个式子中是表示运算的加.减符号, 还是表示数的正、负的性质符号.(2)请比较本题三种解法,选出最好的一种.例3分别求数轴上A. B两点间的距离AB.(1)ABL6032分析:求数轴上两点间的距离就是求这两点所表示的有理数之差的绝对值. 解:(1)AB二
13、 3. 2- (-4. 6) | = 3 2+4. 6 = 7. 8 =7.8;A5二|_7丄_(_11) |=|-7+ I 3 4门 112小结:一般地,若数轴上A、B两点分别表示的数为/ b则A、B两点的距离AB二b-a例4.若|x-3 =2,求x解法 1: x-3 =2, x-3二2 或 x-3二-2x=2+3,或 x二-2+3 x=5,或 x二 1答:x=5或x=l解法2:设在数轴上,A点表示3, B点表示x,则x-31二2表示B点到A点的距离是2.2 一 半 2 、.內A比 )0 135可是在数轴表示数X的点B到表示数3的点A距离为2的点有两个, 它们分别是1和5对应的点场、场, x
14、二1或x=5.(=)、有理数加减法的实际问题圖例1.某检修小组乘汽车沿公路检修线路,约立前进为正,后退为负,某天自A地出发到收工时所走路 线(单位:千米)为:+10, -3, +4, +2, -8, +13, -2, +12, +8. +5。(1) 问收工时距A地多远?(2) 若每千米路程耗油0. 2升,问从A地出发到收工时共耗油多少升?分析:(1)求收工时距A地多远,应求出己知10个有理数的和,若和为正数,则此和是在A地前而距A 地的路程;若和为负数,则此和的绝对值是在A地后而距A地的路程。(2)要求耗油量,需求出汽车共行疋的路程,即求各数的绝对值之和,然后乘以0.2升即可。解:(1) (+
15、10) + (-3) + (+4) + (+2) + (-8) + (+13) + (2) + (+12) + (+8) + (+5)=+2+(2)+(-8)+(+8)+(+10+4+13+12+5)+(3)二0+0+44+ (-3)=41(千米):(2) (|+101+ |-31+|+4| + |+21 + |-81 + |+13| + |-211 + |+121 + |+81 + |+5|) X0. 2 =67X0. 2=13. 4(升)答:收工时在A地前而41千米,从A地出发到收工时共耗油13.4升。例2股民老王上星期五买进某公司股票1000股,每股27元,下表为本周内每天该股票的涨跌情
16、况(单 位:元)星期一二三四五每星期涨跌+3+5.5-1-3.5-(1) 星期三收盘时,每股是多少元?(2) 本周内最高价是每股多少元?最低价是每股多少元?(3) 已知老王买进股票时付了 1.5%。的手续费,卖岀时需付成交额1.5%的手续费和1%。的交易税,如果 老王在星期五收益时将全部股票卖出,他的收益情况如何?解:(1) 27+(+3)+ (5. 5)+ (-1)=34. 5 (元)答:星期三收盘时,每股是34. 5元(2) 本周内最高股价为:27+(+3)+(+5. 5)=35. 5 (元)最低股价为:27+ (+3) + (+5. 5) + (-1) + (-3. 5) + (-5)
17、=26 (元)答:本周内最高价是每股为:35.5元,最低价每股26元(3) 周五的股价是:27+(+3) + (+5 5) + (-1) +(-3. 5) +(-5)二26 (兀)老王上周五买进股票时共付金额:27X1000+27X1000X 1. 5%o=27040. 5 (元) 本周五收盘时老王拥有金额:26 X 1000-26 X 1000 X (1. 5%。+1%)2.5=2600-2600 X 1000=26000-65=25935 (元):老王的收益:25935-27040. 5=-1105.5 (元)答:如果老王在星期五收盘时把全部股票卖岀,他将亏损1105.5元。(四八有理数的
18、加减运算练习:1选择题:(1)下列各式:(+8) + (-10)二-2,長何其中正确的个数是()oA、1B、2C. 3D、4(2)下列计算中,结果等于3的是()oA、一8 + +5B、(一8) + (+5)C. -7 +(-4)D、(一7)+ -4(3)要使两个有理数的和小于每一个加数,只要()oA、这两个加数一正一负,且负数的绝对值大。B、这两个加数都是负数C、这两个加数中,至少有一个数是负数D、这两个加数中,有一个是零(4)若+m=0,则()。A、m0C、mWOD、m202、计算下列各题(-均+ (3+(2.方) + (-571田尹(盲)3、10箱苹果,如果每箱以20千米为准,超过的千克数
19、记作正数,不足的千克数记作负数。称量的记录如卜:+2, +1, 0, -1, -1. 5, 一2、+1, -1 -1, -0.5.这10箱苹果的总质量是多少千克?参考答案:1、C (,,正确);C: B: C2、(1 )0 (2)8 (3) 4 (4)283、解:20X 10+(2+1 +0+(-1)+(-1.5)+(-2)+1 +(-1)+(-1 H(-0.5)= 197(千克)答:这十箱苹果的总质量是197千克。四、科学记数法和近似数掌握科学记数法的形式和要点,能按照要求使用科学记数法,理解有效数字,近似数的意义,能 按照要求进行近似计算。(-)、情境创设的引入105 二 100000 1
20、06 二 1000000 1O10 二 1012 二观察10渋的特点,你发现了什么规律:10启的特点是1后而有n个0,共有n+1位。先见闪电,后闻雷声”,这个现象的解释是:光的传播速度大约为3OOOOOOOOm/s,而声音在常温下的 传播速度大约为340m/s。可见光的速度大大快于声音的速度。(-)、探索知识日常生活中我们还会遇到一些特别大的数,如有人体中大约有25000000000000个红细胞。全世界人口大约是6100000000人地球的陆地而积约为149000000千米2地球的海洋而积约为361000000千米2算一算 5000000 X 5000000可以发现一些足够大的数在读、写、算
21、都不方便,根据10”的特点,我们可以这样来表示这些较大的数。300000000=3 X 100000000=3 X25000000000000=2.5 X 10000000000000=2.5 X 1。一般地,一个大于10的数可以写成axlh的形式,其中1 WaVIO, n是正整数,这种记数方法称为科 学记数法。(scientific notation)例1、1972年3月发射的“先驱者10号”是人类发往太阳系外的第一艘人造太空探测器,至2月人们 最后一次收到它发回的信号时,它已飞离地球用科学记数法表示。解答:1.22F0加例2、用科学记数法表示下列各数:(1)400320 (2)1000000 (3)-726.4 (4) 31 x 1解答:(i)40032xlL(2)ixlL -7.264 xlO2 (4)3.1xl03例3、下列各数的原数是多少?(l)1.25x!04 -3.03xlO2 (3)3xlO
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国右旋烯炔菊酯项目商业计划书
- 2025年中国微纳米银粉项目投资计划书
- 哈尔滨市人民医院肿瘤手术病理评估考核
- 晋中市中医院放射治疗计划评估标准与争议辨析题
- 中国化工溶剂项目创业计划书
- 晋城市人民医院龋病风险评估与防治考核
- 上海市人民医院呼吸科疼痛管理全流程质量考核试题
- 2025年中国平板玻璃项目投资计划书
- 赤峰市人民医院内分泌科护士晋升主管护师重症监护考核
- 赤峰市中医院腹腔镜术中出血控制技能考核
- 2025届上海闵行区高三二模高考英语试卷试题(含答案详解)
- 警察防卫技术课件
- 膈疝介绍课件
- 江苏协理员笔试题及答案
- 医疗器械注册人制度培训
- 注册电气工程师考试试题及答案
- 手术室护理工作中人文关怀和措施
- 四年级上册数学必背概念公式
- 全国公开课一等奖四年级上册数学人教版《三位数乘两位数-单价、数量和总价》课件
- 2025年《儿童脑性瘫痪》标准课件
- TY/T 3802.1-2024健身瑜伽运动装备使用要求和检验方法第1部分:瑜伽垫
评论
0/150
提交评论