下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、市区中医药卫生技术人才需求探索 主成分回归模型分析法,先对各自变量进行主成分分析,避开自变量之间的相关性,进而分析各自变量对因变量的影响,即它先将原来的指标通过主成分分析重新组合成一组新的相互独立的综合指标来代替原来的指标,同时根据实际需要从中提取较少的几个综合指标来尽可能多地反映原指标的信息;之后将这些综合指标看作自变量建立回归方程,实现预测。该方法避开了多元回归分析中自变量间的多重共线性。本研究选取个主成分,此时方差累积贡献率为,通过个主成分的线性表达式计算主成分得分,之后将个主成分看做自变量参与多元回归模型分析。在个主成分的多元回归分析中,仍选择“向前法”筛选变量,入选标准为。 前馈型(
2、,)人工神经网络(,)预测模型(模型)的建立近年来在预测领域中一直是研究的热点,建立模型时,首先应考虑网络结构,由于具有一个单隐含层的层前馈型神经网络能以任意精度逼近任一研究数据,因此,选择层前馈型神经网络结构,即个输入层,个隐含层,个输出层;其次应考虑网络各层节点数、激励函数及训练函数。本文通过实验法验证,即先根据经验确定范围,然后在此范围内选择不同的节点数目,选择不同的激励函数和训练函数,以最终预测误差为评选标准,选择最佳节点数、激励函数及训练函数,最终所选的神经网络结构如表所示。效果评价采用均方根误差(,)以及平均绝对百分比误差(,)个指标来考察各模型对研究数据泛化能力。和的值越小,说明
3、预测值与实测值之间的差别越小,预测效果就越好。统计学处理采用统计分析软件及数据处理软件。模型对重庆市中医药类专业卫生技术人员需求的预测效果比模型、好,(表略)。模型对本市年中医药类卫生专业技术人员总数预测结果(表略) 为了探讨寻求最佳模型预测重庆市中医药类卫生技术人员总数,分别建立了个预测模型,即多元线性回归预测模型、主成分回归预测模型、预测模型,各模型的优缺点:()当研究各影响因素与因变量之间的关系,并通过这些影响因素预测因变量时,多元线性回归模型是较常采用的研究方法。但多元线性回归需要因变量数据呈正态性分布、各影响因素之间相互独立且与因变量之间呈线性变化趋势,众多限制条件不仅限制了多元线性
4、回归的应用,更影响其预测效果。()主成分回归模型先将原来的影响因素指标通过主成分分析重新组合成一组新的相互独立的综合指标来代替原来的指标,同时根据实际需要从中提取较少的几个综合指标来尽可能多地反映原指标的信息;之后将这些综合指标看作自变量进行多元线性回归,从而建立回归方程,实现预测,可见该方法既避开了多元回归分析中自变量间的多重共线性问题,也能在尽量保留原始数据信息前提下,达到减少自变量个数的目的,因而与多元线性回归相比,具有一定优势。但主成分回归同样也要求各主成分指标与因变量之间线性相关要求,且通过综合原始数据信息而得到的主成分,反而使得其与因变量线性相关性判断更加困难。()不管是多元线性回
5、归模型,还是主成分回归模型,在建模预测时,都要求因变量满足正态性和自变量相互独立性,且要求自变量与因变量须呈线性相关关系,而无此限制。并且加入隐含层的可以逼近从输入到输出间的任意非线性映射,避开类复杂的参数估计过程,直接给出结果,简单直观,易于操作,因而更具有优势。但是基于自动学习理论而提出的灰色学习系统,它直接给出结果,不能通过具体模型方程确切表达出输入与输出之间的映射关系,这与回归预测模型有所区别;并且存在不稳定性现象,即对同一训练数据重复运行模型程序后得到的结果并不总是一样,不稳定性现象主要是由于初始网络参数为随机数,而不同的初始网络参数又会导致网络不同的输出造成的。此外,人工神经网络理论尚不十分成熟,如隐含层节点数的选择目前尚无统一认可的选择依据或公式,本研究所建立的人工神经网络在选择隐含层节点时,先给出最佳隐含层节点所在大致区间,然后分别取该区间的任一整数为隐含层神经元的个数,分别建立神经网络模型,通过同一研究数据的计算与分析,以最终的网络训练误差为选择标准,以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 泌尿外科个案护理课件
- 梅毒病人的护理教学查房
- 2026河北沧州职业技术学院、沧州工贸学校高层次人才选聘23人考试笔试模拟试题及答案解析
- 危重组护理质量分析
- 吉安市文化传媒集团有限责任公司2025年公开招聘劳务派遣工作人员考试笔试模拟试题及答案解析
- 锦江区新兴领域党建工作专员招募(20人)考试笔试备考题库及答案解析
- 2025河南开封市文化旅游股份有限公司招聘2人考试笔试备考试题及答案解析
- 静脉麻醉插管护理
- 2025福建厦门市集美区蔡林学校数学非在编教师招聘1人考试笔试备考试题及答案解析
- 护理仔细观察案例分享
- 《十五五规划》客观测试题及答案解析(二十届四中全会)
- 仿古建筑概念方案设计说明
- 月子会所的礼仪培训课件
- DB32-T 1086-2022 高速公路建设项目档案管理规范
- 核心员工留任与薪酬激励方案
- 代码开发安全培训课件
- (2025年标准)科研资助经费协议书
- 知识产权侵权培训课件
- 2025年四川省事业单位招聘考试综合类公共基础知识真题模拟试卷
- 肿瘤常见急症及处理
- 阑尾炎健康宣教课件
评论
0/150
提交评论