2020届北京市密云区高三下学期第一次阶段性测试(一模)数学试题(解析版)(总20页)_第1页
2020届北京市密云区高三下学期第一次阶段性测试(一模)数学试题(解析版)(总20页)_第2页
2020届北京市密云区高三下学期第一次阶段性测试(一模)数学试题(解析版)(总20页)_第3页
2020届北京市密云区高三下学期第一次阶段性测试(一模)数学试题(解析版)(总20页)_第4页
2020届北京市密云区高三下学期第一次阶段性测试(一模)数学试题(解析版)(总20页)_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2020届北京市密云区高三下学期第一次阶段性测试(一模)数学试题一、单选题1已知集合,则( )ABCD【答案】C【解析】根据交集计算即可.【详解】,,故选:C【点睛】本题主要考查了交集的运算,属于容易题.2已知复数,则( )ABCD2【答案】C【解析】根据复数模的性质即可求解.【详解】,故选:C【点睛】本题主要考查了复数模的性质,属于容易题.3设数列是等差数列,.则这个数列的前7项和等于( )A12B21C24D36【答案】B【解析】根据等差数列的性质可得,由等差数列求和公式可得结果.【详解】因为数列是等差数列,所以,即,又,所以,故故选:B【点睛】本题主要考查了等差数列的通项公式,性质,等差

2、数列的和,属于中档题.4已知平面向量,则实数x的值等于( )A6B1CD【答案】A【解析】根据向量平行的坐标表示即可求解.【详解】,即,故选:A【点睛】本题主要考查了向量平行的坐标运算,属于容易题.5已知x,则“”是“”的( )A充分而不必要条件B必要而不充分条件C充分必要条件D既不充分也不必要条件【答案】D【解析】,不能得到, 成立也不能推出,即可得到答案.【详解】因为x,当时,不妨取,故时,不成立,当时,不妨取,则不成立,综上可知,“”是“”的既不充分也不必要条件,故选:D【点睛】本题主要考查了充分条件,必要条件的判定,属于容易题.6如果直线与圆相交,则点与圆C的位置关系是( )A点M在圆

3、C上B点M在圆C外C点M在圆C内D上述三种情况都有可能【答案】B【解析】根据圆心到直线的距离小于半径可得满足的条件,利用与圆心的距离判断即可.【详解】直线与圆相交,圆心到直线的距离,即也就是点到圆的圆心的距离大于半径即点与圆的位置关系是点在圆外故选:【点睛】本题主要考查直线与圆相交的性质,考查点到直线距离公式的应用,属于中档题7函数的部分图象如图所示,则的单调递增区间为( )ABCD【答案】D【解析】由图象可以求出周期,得到,根据图象过点可求,根据正弦型函数的性质求出单调增区间即可.【详解】由图象知,所以,又图象过点,所以,故可取,所以令,解得所以函数的单调递增区间为故选:【点睛】本题主要考查

4、了三角函数的图象与性质,利用“五点法”求函数解析式,属于中档题.8某四棱锥的三视图如图所示,则该四棱锥的表面积为( )A8BCD【答案】D【解析】根据三视图还原几何体为四棱锥,即可求出几何体的表面积【详解】由三视图知几何体是四棱锥,如图,且四棱锥的一条侧棱与底面垂直,四棱锥的底面是正方形,边长为2,棱锥的高为2,所以,故选:【点睛】本题主要考查了由三视图还原几何体,棱锥表面积的计算,考查了学生的运算能力,属于中档题.9已知斜率为k的直线l与抛物线交于A,B两点,线段AB的中点为,则斜率k的取值范围是( )ABCD【答案】C【解析】设,设直线的方程为:,与抛物线方程联立,由得,利用韦达定理结合已

5、知条件得,代入上式即可求出的取值范围【详解】设直线的方程为:, ,联立方程,消去得:,且,线段的中点为,,把 代入,得,故选:【点睛】本题主要考查了直线与抛物线的位置关系,考查了韦达定理的应用,属于中档题10在正方体中,E是棱的中点,F是侧面内的动点,且与平面的垂线垂直,如图所示,下列说法不正确的是( )A点F的轨迹是一条线段B与BE是异面直线C与不可能平行D三棱锥的体积为定值【答案】C【解析】分别根据线面平行的性质定理以及异面直线的定义,体积公式分别进行判断【详解】对于,设平面与直线交于点,连接、,则为的中点分别取、的中点、,连接、, ,平面,平面,平面同理可得平面,、是平面内的相交直线平面

6、平面,由此结合平面,可得直线平面,即点是线段上上的动点正确对于,平面平面,和平面相交,与是异面直线,正确对于,由知,平面平面,与不可能平行,错误对于,因为,则到平面的距离是定值,三棱锥的体积为定值,所以正确;故选:【点睛】本题考查了正方形的性质、空间位置关系、空间角、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题二、填空题11的展开式中含的系数为_(用数字填写答案)【答案】 【解析】由题意得,二项式展开式的通项为,令,则,所以得系数为12双曲线的焦点坐标是_,渐近线方程是_.【答案】 【解析】通过双曲线的标准方程,求解,即可得到所求的结果【详解】由双曲线,可得,则,所以双曲线的焦点坐

7、标是,渐近线方程为:故答案为:;【点睛】本题主要考查了双曲线的简单性质的应用,考查了运算能力,属于容易题13在疫情防控过程中,某医院一次性收治患者127人.在医护人员的精心治疗下,第15天开始有患者治愈出院,并且恰有其中的1名患者治愈出院.如果从第16天开始,每天出院的人数是前一天出院人数的2倍,那么第19天治愈出院患者的人数为_,第_天该医院本次收治的所有患者能全部治愈出院.【答案】16 21 【解析】由题意可知出院人数构成一个首项为1,公比为2的等比数列,由此可求结果【详解】某医院一次性收治患者127人第15天开始有患者治愈出院,并且恰有其中的1名患者治愈出院且从第16天开始,每天出院的人

8、数是前一天出院人数的2倍,从第15天开始,每天出院人数构成以1为首项,2为公比的等比数列,则第19天治愈出院患者的人数为,解得,第天该医院本次收治的所有患者能全部治愈出院故答案为:16,21【点睛】本题主要考查了等比数列在实际问题中的应用,考查等比数列的性质等基础知识,考查推理能力与计算能力,属于中档题14函数的最小正周期是_,单调递增区间是_.【答案】 , 【解析】化简函数的解析式,利用余弦函数的图象和性质求解即可【详解】函数,最小正周期,令,可得,所以单调递增区间是,故答案为:,【点睛】本题主要考查了二倍角的公式的应用,余弦函数的图象与性质,属于中档题15已知函数,若关于x的方程有且只有两

9、个不相等的实数根,则实数a的取值范围是_.【答案】【解析】画出函数的图象,再画的图象,求出一个交点时的的值,然后平行移动可得有两个交点时的的范围【详解】函数的图象如图所示:因为方程有且只有两个不相等的实数根,所以图象与直线有且只有两个交点即可,当过点时两个函数有一个交点,即时,与函数有一个交点,由图象可知,直线向下平移后有两个交点,可得,故答案为:【点睛】本题主要考查了方程的跟与函数的图象交点的转化,数形结合的思想,属于中档题三、解答题16在中,a,b,c分别是角A,B,C的对边,并且.(1)已知_,计算的面积;请,这三个条件中任选两个,将问题(1)补充完整,并作答.注意,只需选择其中的一种情

10、况作答即可,如果选择多种情况作答,以第一种情况的解答计分.(2)求的最大值.【答案】(1)见解析(2)1【解析】(1) 选,可得,结合,求得即可;若选,由可得由,求得即可;若选,可得,又,可得,即可;(2)化简,根据角的范围求最值即可【详解】(1)若选,又,的面积若选,由可得,又,的面积 若选,又,可得,的面积(2),当时,有最大值1【点睛】本题考查了正余弦定理,三角三角恒等变形,考查了计算能力,属于中档题17在考察疫情防控工作中,某区卫生防控中心提出了“要坚持开展爱国卫生运动,从人居环境改善、饮食习惯、社会心理健康、公共卫生设施等多个方面开展,特别是要坚决杜绝食用野生动物的陋习,提倡文明健康

11、、绿色环保的生活方式”的要求.某小组通过问卷调查,随机收集了该区居民六类日常生活习惯的有关数据.六类习惯是:(1)卫生习惯状况类;(2)垃圾处理状况类;(3)体育锻炼状况类;(4)心理健康状况类;(5)膳食合理状况类;(6)作息规律状况类.经过数据整理,得到下表:卫生习惯状况类垃圾处理状况类体育锻炼状况类心理健康状况类膳食合理状况类作息规律状况类有效答卷份数380550330410400430习惯良好频率0.60.90.80.70.650.6假设每份调查问卷只调查上述六类状况之一,各类调查是否达到良好标准相互独立.(1)从小组收集的有效答卷中随机选取1份,求这份试卷的调查结果是膳食合理状况类中

12、习惯良好者的概率;(2)从该区任选一位居民,试估计他在“卫生习惯状况类、体育锻炼状况类、膳食合理状况类”三类习惯方面,至少具备两类良好习惯的概率;(3)利用上述六类习惯调查的排序,用“”表示任选一位第k类受访者是习惯良好者,“”表示任选一位第k类受访者不是习惯良好者().写出方差,的大小关系.【答案】(1)(2)(3)【解析】(1)设“选取的试卷的调查结果是膳食合理状况类中习惯良好者“的事件为,根据古典概型求出即可;(2)设该区“卫生习惯状况良好者“,“体育锻炼状况良好者“、“膳食合理状况良好者”事件分别为,设事件为“该居民在“卫生习惯状况类、体育锻炼状况类、膳食合理状况类”三类习惯方面,至少

13、具备两类良好习惯“,则(E),求出即可;(3)根据题意,写出即可【详解】(1)设“选取的试卷的调查结果是膳食合理状况类中习惯良好者“的事件为,有效问卷共有(份,其中受访者中膳食合理习惯良好的人数是人,故(A);(2)设该区“卫生习惯状况良好者“,“体育锻炼状况良好者“、“膳食合理状况良好者”事件分别为,根据题意,可知(A),(B),(C),设事件为“该居民在“卫生习惯状况类、体育锻炼状况类、膳食合理状况类”三类习惯方面,至少具备两类良好习惯“则.所以该居民在“卫生习惯状况类、体育锻炼状况类、膳食合理状况类”三类习惯至少具备2个良好习惯的概率为0.766.(3)【点睛】本题考查了古典概型求概率,

14、独立性事件,互斥性事件求概率等,考查运算能力和事件应用能力,中档题18如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,为等边三角形,平面平面ABCD,M,N分别是线段PD和BC的中点.(1)求直线CM与平面PAB所成角的正弦值;(2)求二面角D-AP-B的余弦值;(3)试判断直线MN与平面PAB的位置关系,并给出证明.【答案】(1)(2)(3)直线平面,证明见解析【解析】取中点,连接,则,再由已知证明平面,以为坐标原点,分别以,所在直线为,轴建立空间直角坐标系,求出平面的一个法向量(1)求出的坐标,由与所成角的余弦值可得直线与平面所成角的正弦值;(2)求出平面的一个法向量,再由两平

15、面法向量所成角的余弦值可得二面角的余弦值;(3)求出的坐标,由,结合平面,可得直线平面【详解】底面是边长为2的菱形,为等边三角形取中点,连接,则,为等边三角形,又平面平面,且平面平面,平面以为坐标原点,分别以,所在直线为,轴建立空间直角坐标系则,1,0,0,设平面的一个法向量为由,取,得(1)证明:设直线与平面所成角为,则,即直线与平面所成角的正弦值为;(2)设平面的一个法向量为,由,得二面角的余弦值为;(3),又平面,直线平面【点睛】本题考查线面平行的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理能力与计算能力,属于中档题19已知函数,.(1)求曲

16、线在点处的切线方程;(2)求函数的单调区间;(3)判断函数的零点个数.【答案】(1)(2)答案见解析(3)答案见解析【解析】(1)设曲线在点,处的切线的斜率为,可求得,利用直线的点斜式方程即可求得答案;(2)由()知,分时,三类讨论,即可求得各种情况下的的单调区间为;(3)分与两类讨论,即可判断函数的零点个数【详解】(1),设曲线在点,处的切线的斜率为,则,又,曲线在点,处的切线方程为:,即;(2)由(1)知,故当时,所以在上单调递增;当时,;,;的递减区间为,递增区间为,;当时,同理可得的递增区间为,递减区间为,;综上所述,时,单调递增为,无递减区间;当时,的递减区间为,递增区间为,;当时,

17、的递增区间为,递减区间为,;(3)当时,恒成立,所以无零点;当时,由,得:,只有一个零点【点睛】本题考查利用导数研究曲线上某点的切线方程,利用导数研究函数的单调性,考查分类讨论思想与推理、运算能力,属于中档题20已知椭圆的离心率为,且过点.(1)求椭圆C的标准方程;(2)点P是椭圆上异于短轴端点A,B的任意一点,过点P作轴于Q,线段PQ的中点为M.直线AM与直线交于点N,D为线段BN的中点,设O为坐标原点,试判断以OD为直径的圆与点M的位置关系.【答案】(1)(2)点在以为直径的圆上【解析】(1)根据题意列出关于,的方程组,解出,的值,即可得到椭圆的标准方程;(2)设点,则,求出直线的方程,进

18、而求出点的坐标,再利用中点坐标公式得到点的坐标,下面结合点在椭圆上证出,所以点在以为直径的圆上【详解】(1)由题意可知,解得,椭圆的标准方程为:.(2)设点,则,直线的斜率为,直线的方程为:,令得,点的坐标为,点的坐标为,又点,在椭圆上,点在以为直径的圆上【点睛】本题主要考查了椭圆方程,考查了中点坐标公式,以及平面向量的基本知识,属于中档题21设等差数列的首项为0,公差为a,;等差数列的首项为0,公差为b,.由数列和构造数表M,与数表;记数表M中位于第i行第j列的元素为,其中,(i,j=1,2,3,).记数表中位于第i行第j列的元素为,其中(,).如:,.(1)设,请计算,;(2)设,试求,的表达式(用i,j表示),并证明:对于整数t,若t不属于数表M,则t属于数表;(3)设,对于整数t,t不属于数表M,求t的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论