




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1 Chapter 2 Linear time-invariant systems (LTI) Yu Zhuliang College of Automation Science and Engineering South China University of Technology 2 Unit impulse and Unit Step Functions (In Chapter 1,discrete-time case) nExtremely important signal, unit impulse 3 Unit impulse and Unit Step Functions (In
2、 Chapter 1) nAnother important signal,unit step 4 Unit impulse and Unit Step Functions (In Chapter 1) nFirst difference nRunning sum 5 Unit impulse and Unit Step Functions (In Chapter 1) nAlternative expression nUnit impulse sequence is always used to sample the value of signals at n=0 or n=n0 6 Uni
3、t impulse and Unit Step Functions (In Chapter 1,continuous-time case) nunit step function 7 Unit impulse and Unit Step Functions (In Chapter 1,continuous-time case) nTher unit impulse function is related to the unit step function in a manner analogous to the relationship between discrete-time unit i
4、mpulse and step functions nRunning integral nFirst derivative ? 8 Unit impulse and Unit Step Functions (In Chapter 1,continuous-time case) nApproximation in definition 9 Unit impulse and Unit Step Functions (In Chapter 1,continuous-time case) nUnit impulse function, no duration but unit area. nScale
5、d unit impulse function nWe have 10 Unit impulse and Unit Step Functions (In Chapter 1,continuous-time case) 11 Unit impulse and Unit Step Functions (In Chapter 1,continuous-time case) nUnit impulse function for sampling nFor sufficiently small interval nTherefore 12 Unit impulse and Unit Step Funct
6、ions (In Chapter 1,continuous-time case) nMore generally 13 Introduciton on LTI nLinearity and time invariance play a fundamental role in signal and system analysis qMany physical processes possess these properties and thus can be modeled as linear time-invariant (LTI) systems qLTI systems can be an
7、alyzed in considerable detail, providing both insight into their properties and a set of powerful tools that form the core of signal and system analysis 14 Discrete-time system: Convolution sum nExpress signal in terms of impulse nIt is a weighted sum of shifted unit impulses. nThe response of a LTI
8、 system to the input signal is just the weighted sum of the shifted system response functions. 15 Discrete-time system: Convolution sum nThe response of system is nWhere 16 Discrete-time system: Convolution sum nSince nConvolution Sum 17 Convolution Sum Linearity: Superposition Impulse Response Time
9、 Invariant Signal Decomposition 18 Discrete-time system: Convolution sum Example 2.1 2.2 19 20 Discrete-time system: Convolution sum nMore on convolution sum (Example 2.3) 21 Discrete-time system: Convolution sum nMore on convolution sum (Example 2.3) 22 Convolution Sum Linearity: Superposition Impu
10、lse Response Time Invariant Signal Decomposition 23 nSignal representation in terms of impulse Continuous-time system: Convolution integral 24 Continuous-time system: Convolution integral nSignal representation in terms of impulse 25 Continuous-time system: Convolution integral nResponse signal repr
11、esentation 26 Continuous-time system: Convolution integral nCalculation of convolution integral nExample 2.6 27 Convolution integral and Sum (Properties) nThe characteristics of an LTI system are completely determined by its impulse response. nIt is important to emphasize that this property holds in
12、 general only for LTI system. 28 Convolution integral and Sum (Properties) nThe commutative property nThe distributive property 29 Convolution integral and Sum (Properties) nThe distributive property 30 Convolution integral and Sum (Properties) nThe Associative property 31 Convolution integral and S
13、um (Properties) nLTI system without memory nInvertbility of LTI system 32 Convolution integral and Sum (Properties) nCausality of LTI system nCausality of an LTI system is equivalent to its impulse response being a causal signal 33 Convolution integral and Sum (Properties) 34 Convolution integral an
14、d Sum (Properties) nStability for LTI system nIf the impulse response is absolutely sumable, that is, if then the system is stable. nDeduction: 35 Casual LTI system Described by Differential and Difference Equations nLinear constant-coefficient Differential Equations nLinear constant-coefficient Dif
15、ference Equations 36 Causual LTI system Described by Differential and Difference Equations nParticular solution + Homogeneous solution (Example 2.14) nFinite impulse response (FIR) system nInfinite impulse response (IIR) system 37 Causual LTI system Described by Differential and Difference Equations
16、 38 Causual LTI system Described by Differential and Difference Equations 39 Causual LTI system Described by Differential and Difference Equations 40 Homework nEx 2.1, nEx 2.3, nEx 2.6, nEx 2.8, nEx 2.11, nEx 2.22, nEx 2.23, nEx 2.43, 41 Convolution Sum (Review) Linearity: Superposition Impulse Resp
17、onse Time Invariant Signal Decomposition 42 Convolution Integral (Review) Linearity: Superposition Impulse Response Time Invariant Signal Decomposition 43 Comparison Linearity: Superposition Impulse Response Time Invariant Signal Decomposition Linearity: Superposition Impulse Response Time Invariant Signal Decomposition 44 Convolution integ
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 初一生物健康食品
- 肾内科常见危急值管理要点
- 肿瘤病人的康复与护理
- 酒店水暖工基础知识培训
- 圣贤教育改变命运
- 专题抗疫教育实施路径
- 2023-2024学年江苏省镇江市丹徒区江心实验校初中数学毕业考试模拟冲刺卷含解析
- 营销新员工培训方案
- 运输公司教育培训
- 行政程序法题目及答案
- 2025年轨道车司机(中级)职业技能鉴定参考试题库(含答案)
- 生物必修1教师用书
- 2024版压力容器设计审核机考题库-多选3-3
- 慢性阻塞性肺疾病急性加重期合并II型呼吸衰竭个案护理
- 路由与交换技术试题及答案
- (完整版)保安培训课件
- 2025届上海市(春秋考)高考英语考纲词汇对照表清单
- 《外汇交易基础知识培训》详解课件
- 汽油化学品安全技术说明书MSDS
- 输变电专业知识培训课件
- 新高考数学题型全归纳之排列组合专题18环排问题含答案及解析
评论
0/150
提交评论