新高考数学题型全归纳之排列组合专题18环排问题含答案及解析_第1页
新高考数学题型全归纳之排列组合专题18环排问题含答案及解析_第2页
新高考数学题型全归纳之排列组合专题18环排问题含答案及解析_第3页
新高考数学题型全归纳之排列组合专题18环排问题含答案及解析_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题18环排问题例1.7颗颜色不同的珠子,可穿成种不同的珠子圈.例2.6颗颜色不同的钻石,可穿成几种钻石圈?例3.有5个匣子,每个匣子有一把钥匙,并且钥匙不能通用,如果在每一个匣子内各放入一把钥匙,然后把匣子全部锁上,要求砸开一个匣子后,能继续用钥匙打开其余4个匣子,那么钥匙的放法有种.例4.8人围桌而坐,共有多少种坐法?例5.A,B,C,D,E,F六人围坐在一张圆桌周围开会,A是会议的中心发言人,必须坐最北面的椅子,B,C二人必须坐相邻的两把椅子,其余三人坐剩余的三把椅子,则不同的座次有()A.60种 B.48种 C.30种 D.24种例6.现有一圆桌,周边有标号为1,2,3,4的四个座位,甲、乙、丙、丁四位同学坐在一起探讨一个数学课题,每人只能坐一个座位,甲先选座位,且甲、乙不能相邻,则所有选座方法有____种.(用数字作答)例7.8人围圆桌开会,其中正、副组长各1人,记录员1人.(1)若正、副组长相邻而坐,有多少种坐法?(2)若记录员坐于正、副组长之间,有多少种坐法?

专题18环排问题例1.7颗颜色不同的珠子,可穿成种不同的珠子圈.【解析】因为由于环状排列没有首尾之分,将个元素围成的环状排列剪开看成个元素排成一排,即共有种排法.由于个元素共有种不同的剪法,则环状排列共有种排法,而珠子圈没有反正,故7颗颜色不同的珠子,可穿成种不同的珠子圈.故答案为:360.例2.6颗颜色不同的钻石,可穿成几种钻石圈?【解析】因为由于环状排列没有首尾之分,将个元素围成的环状排列剪开看成个元素排成一排,即共有种种排法.由于个元素共有种不同的剪法,则环状排列共有有种种排法,而钻石圈没有反正,故6颗颜色不同的钻石,可穿成种不同的钻石圈.例3.有5个匣子,每个匣子有一把钥匙,并且钥匙不能通用,如果在每一个匣子内各放入一把钥匙,然后把匣子全部锁上,要求砸开一个匣子后,能继续用钥匙打开其余4个匣子,那么钥匙的放法有种.【解析】在砸开的匣子中必放有另一个匣子的钥匙,在匣子中又放有匣子的钥匙,在匣子中放有匣子的钥匙,在匣子中放有匣子的钥匙,在匣子中放有被砸开的匣子的钥匙.记这个砸开的匣子为.这就相当于1,2,3,4,5形成一个环状排列,反过来,对由1,2,3,4,5排成的每一种环状排列,也就可以对应成一种相继打开各个匣子的一种放钥匙的方法.先让5个匣子沿着圆环对号入座,再在每个匣子中放入其下方的匣子的钥匙(如图),这就得到种相继打开各个匣子的放钥匙的方法.所以,可使所有匣子相继打开的放钥匙的方法数恰与1,2,3,4,5的环状排列数相等,由于每个环状排列(如图)可以剪开拉直为5个排列:,,,,;,,,,;,,,,;,,,,;,,,,;反之,5个这样的排列对应着一个环状排列,因而5个元素的环状排列数为:(种一般地,个元素的环状排列数为种故答案为:24例4.8人围桌而坐,共有多少种坐法?【解析】围桌而坐与坐成一排的不同点在于,坐成圆形没有首尾之分,所以固定一人并从此位置把圆形展成直线其余7人共有(8-1)!种排法即!例5.A,B,C,D,E,F六人围坐在一张圆桌周围开会,A是会议的中心发言人,必须坐最北面的椅子,B,C二人必须坐相邻的两把椅子,其余三人坐剩余的三把椅子,则不同的座次有()A.60种 B.48种 C.30种 D.24种【解析】首先,A是会议的中心发言人,必须坐最北面的椅子,考虑B、C两人的情况,只能选择相邻的两个座位,位置可以互换,根据排列数的计算公式,得到,,接下来,考虑其余三人的情况,其余位置可以互换,可得种,最后根据分步计数原理,得到种,故选B.例6.现有一圆桌,周边有标号为1,2,3,4的四个座位,甲、乙、丙、丁四位同学坐在一起探讨一个数学课题,每人只能坐一个座位,甲先选座位,且甲、乙不能相邻,则所有选座方法有____种.(用数字作答)【解析】先按排甲,其选座方法有种,由于甲、乙不能相邻,所以乙只能坐甲对面,而丙、丁两位同学坐另两个位置的坐法有种,所以共有坐法种数为种.故答案为8.例7.8人围圆桌开会,其中正、副组长各1人,记录员1人.(1)若正、副组长相邻而坐,有多少种坐法?(2)若记录员坐于正、副组长之间,有多少种坐法?【解析】(1)正、副组长相邻而坐,可将此2人当作1人看,即7人围一圆桌,有(7-1)!=6!种坐法,又因为正、副组长2人可换位,有2!种坐法.故所求坐法为(7-1)!

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论