




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、学号 1250901205沟葢李农学年论文(2016届本科)题目:浅谈幻方以及其解法学院:数学与统计学院专业:数学与应用数学作者姓名:甘天明指导教师:任天胜 职称:副教授完成日期:2014 年 12 月 18 日浅谈幻方以及其解法甘天明指导教师:任天胜(河西学院数学与应用数学专业2016届2班05号 甘肃张掖734000)摘 要 多少世纪以来,人们对幻方总是怀着浓厚的兴趣,从古代起幻方就跟某些超自然和 魔术的领域相联系。 在古代亚洲的城市, 人们在考古挖掘中发现了它们。有关幻方的最早纪录,是约于公元前2200年在中国出现的“洛书”,传说这个幻方最初是大禹在黄河岸边的一 只神龟的背上看到的。幻方
2、,有时又称魔方(该称呼现一般指立方体的魔术方块)或纵横图,有一组排放在正方形中的整数组成, 其每行、每列以及两条对角线上的数之和均相等。幻方起源于我国,并由我国传到全世界,在这漫长的历史中,幻方也得到了广泛的发展和进步。本文主要分为两部分, 第一部分从幻方的历史和发展,幻方问题的研究以及幻方的应用来认识幻方;第二部分主要介绍幻方的解法。关键字:幻方;幻和;奇幻方;偶幻方 1引言我国的纵横图通过东南亚国家,印度和阿拉伯传到西方。由于纵横图具有十 分奇幻的特性,西方把纵横图叫做 Magic Square,翻译成中文就是“幻方”或 “魔方”。在一个由若干个排列整齐的数组成的正方形中,图中任意一横行、
3、一 纵列及对角线的几个数之和都相等,具有这种性质的图表,称为“幻方”。幻方问题是具有悠久历史的复杂排列组合问题。 幻方问题的复杂性不仅在于 解的多样性随阶数指数递增,而且在于解在可行排列空间中所占的比例随阶数指 数递减。此外,在文章中,简单介绍了幻方在数学、智力开发、科学以及艺术中的应 用,我们从多个角度去探寻幻方的历史, 发展和在现实生活中的应用,以此来进 一步加深对幻方的理解。在文章第二部分,也介绍了幻方的几种解法,从不同的角度对幻方的解法做 了一点讨论与研究。2预备知识定义2.1 幻方,也叫纵横图,就是在n n的方阵中,放入从1开始的n2个 自然数,在一定的布局下,其各行、各列和两条对角
4、线上的数字之和正好相等。定义2.2 幻方的各行、各列和两条对角线上的数字之和相等的和数即为幻和,也叫幻方常数。定义 2.3 奇阶幻方:当幻方中的 n 为奇数时,我们称幻方为奇阶幻方定义 2.4 偶阶幻方:当幻方中的 n 为偶数时,我们称幻方为偶阶幻方3 幻方的历史和发展关于幻方的起源,我国有“河图”和“洛书”之说。相传在远古时期,伏羲 氏取得天下,把国家治理得井井有条,感动了上天,于是黄河中跃出一匹龙马, 背上驮着一张图,作为礼物献给他,这就是“河图” ,也是最早的幻方。伏羲氏 凭借着“河图”而演绎出了八卦,后来大禹治洪水时,洛水中浮出一只大乌龟, 它的背上有图有字,人们称之为“洛书” 。大约
5、在 8 世纪,中国的幻方记述传入阿拉伯地区。 该地区的人们对幻方产生 了极大兴趣,并做出重要贡献。塔比伊本库拉较早研究了幻方。约 990年,一 批阿拉伯学者编的本百科全书中可找到 3, 4, 5, 6阶幻方,并说明 7, 8, 9阶 幻方的存在。幻方 1315 年前后传人西方后,最初被赋予一种神秘性或作为护身 符,成为神秘哲学的一部分, 或是在一些场合中作为有趣的数学游戏。 但当时并 未引起人们的深思和研究。在中国,宋朝杨辉的续古摘奇算法辑录了更高阶的幻方 (至10阶),他 最早从数学角度研究了洛书的构造法以及其他 6 种变形幻方。它们同样具有某些 组合性质。杨辉还构造出 9 个洛书构成的大幻
6、方,如果洛书中的第 i 列第 j 行数 记为Hj。杨辉之后易东、程大位、王文素,清朝方中逦、张潮、保其寿对幻方及 变形幻方有深入的研究。 形式也趋于多样化。 除了这些以外, 历史上最早的四阶 幻方是在印度发现的 , 那是一个完全幻方, 而且比中国的杨辉还要早了两百多年 , 印度人认为那是天神的手笔。 直到中世纪后 欧洲的一些数学著作中才开始出现 讨论幻方及其改造的内容, 如卡尔丹诺给出了分别以日、 月和五星为名的幻方及 构造法。 7 世纪,日本对幻方也产生很浓的兴趣,主要是关孝和对幻方和幻圆理 论的研究。现在的幻方种类很多,如一般幻方,对称幻方,同心幻方,完美幻方。平面 幻方(二维),幻立方(
7、三维),多维幻方。平方幻方,立方幻方,高次幻方,高次 多维幻方。魔鬼幻方,马步幻方,多重幻方,六角幻方,双料幻方,幻环,幻圆 等等。特殊的幻方有反幻方,完美反幻方。4幻方问题与研究幻方问题是具有悠久历史的复杂排列组合问题。 幻方问题的复杂性不仅在于 解的多样性随阶数指数递增, 而且在于解在可行排列空间中所占的比例随阶数指 数递减。在以前,人们只能靠手算得到一些较低阶的幻方。河图、洛书不过是两 个简单的四阶幻方, 古人也将其视为上天赐予的神物。 然而幻方的许多性质, 从 低阶幻方中总是很难发现。Kraitchik 在 1942 年分别给出奇数阶与偶数阶幻方的确定构造方法,但却 不能构造任意随机幻
8、方, 更不能构造有附加条件或二次以上的幻方。 在幻方研究 中常常需要构造具有附加条件的特殊幻方,如泛幻方 (panmagic square) 、嵌套 幻方(父子幻方)、庆典幻方等, 每一个成功的特殊幻方的直接构造都是一次人类 心智与毅力的艰苦磨砺, 有时虽耗费一生光阴也一无所得。 新的研究理论提出半幻方通过行置换与列置换可实现对角线数字幻和满足的分步构造猜想的基础上, 提出基于演化策略的分步自适应幻方演化算法。变异操作包括元素对置换、整行 置换、整列置换;启发式局部调整操作包括行列局部调整与对角局部调整等。计算表明,分步构造猜想至少在所完成的幻方构造计算实例上是成立的,幻方分步演化算法具有较高
9、的计算效率。虽然幻方分步构造猜想有待证明,但数值实验结果表明,建立在该猜想条件 下的随机幻方演化算法表现出极限成功率,即每次幻方演化过程都能得到不同的 随机幻方,而且演化算法具有较高的构造效率。幻方演化算法属于随机构造法, 不同于传统的确定式幻方构造方法。 因此,幻方演化算法是幻方构造方法中重要 的随机自适应构造新方法。幻方演化算法的高演化效率源于幻方的分步构造猜想与自适应的元素置换 算子。幻方分步构造猜想将一个幻方的构造过程分解为两步,即半幻方演化构造与对角幻和演化构造。这种分步构造法将行列幻和的构造过程与对角幻和的构造 过程“解耦”,使之互不影响。自适应的元素置换算子可将变异对象定位于未满
10、 足幻和的行列元素,并在半幻方构造过程中自适应调整变异概率,使平均变异元素个数保持一定。幻方演化算法的极限成功率源于行列与对角局部调整操作。在半幻方演化的 后期,对于难以通过随机元素置换算子实现幻和构造的局部元素置换对, 行列局 部调整操作在启发式知识下,搜索这些满足条件的元素对实现置换。在对角幻和 的演化后期,对角局部调整操作具有同样效果。5幻方的应用5.1 幻方在数学和智力开发中的应用幻方由于其独特的性质在很多时候可以巧妙的解决一些数学智力问题。如用“三阶幻方”巧填“爱因斯坦填数题”,用“三阶幻方”解决“取牌游戏问题”, 用“四阶幻方”巧填“玛摩西约利斯米难题”。同时由于幻方简单,我们较易
11、入门,所以很容易引起青少年的兴趣。我国从 古代到现代都将幻方原理应用于各种智力产品的开发。如古代的九宫格,以及现 在的华容道和推箱子等各种游戏。5.2 幻方在科学技术中的应用幻方应用于位置解析学及组合解析学中,幻方引出了拉普拉斯的导引系数和 哥斯定理,格里定理等,甚至还引出了普生,布鲁丁两氏的电子方程式。幻方还 引出了桑南的自动控制论,从而促成了电子计算机的诞生。我国也正在研究应用 幻方研究中医理论,是从幻方原理 H0你故意理论,从幻方的数字结构来研究人 体病因的数字特征,以及中药的配置。更多的科学应用方面也正在逐渐在幻方中 寻找灵感用于技术创新。5.3 幻方在艺术中的应用幻方可大量应用美术设
12、计。西方的建筑学家发现幻方的对称性相当丰富, 建 筑家用幻方组建了许多美丽的图案, 他把图案中那些方阵内的线条称为魔线, 并 应用于轻工业品,和包装设计中。在更多人的钻研下,更多的魔线图被设计出, 每种图都是十分漂亮,这些图案表现出多样对称美的同时, 又有幻方原理的理性规律,堪称鬼斧神工6幻方的解法6.1 对差法6.1.1 用“对差”解幻方的基本方法在一个“对”中,大小两数之差称为“对差”,小数减大数为负差,大数减 小数为正差。它们的绝对值相同,只是正负符号相反。因此,在幻方图中,它们 的分布排列情况,清晰可见。而且对差绝对值的个数只有相应幻方数列数字个数 的一半。对于分析它们的合理组合,可以
13、事半功倍,少走弯路。几种排列形式间 也有了方便简捷的转换方法。对差法解幻方,就是将各对差按要求排列,使各横、直、斜行上的对差代数 和为零。正三幻方的对差图如图一。-6+8-2+40-4+2-8+6(图一)奇数格幻方的中心数“ Z”只有一个数(其余对均有大小两个数),Z - Z = 0 , 所以在对差法中,Z可用“ 0 ”表示。图一的正三幻方对差图是怎样做成的呢?正三幻方的对差数列有_2、_4、-6、一8。在这四对中,三数能组成 0的 有:(1) -2-4 6=0 ;( 2)-2-6 8=0 ;+2+4_6=0+2+6_8 = 0其中的一组可组成上下边,另一组可组成左右边。两组中都有-2和-6,
14、所以它们必须列于四角位置。四角一经确定,两角之间的数就迎刃而解了。6.1.2 幻方数列和对差数列6.1.2.1 公差相同的幻方数列,其对差数列也相同奇数格幻方数列,公差为1的,女口1、2、3、4、5、6、7、&9等;2、3、4、5、6、7、8、9、10等;10、11、12、13、14、15、16、17、18 等。它们的首项、中间各项、末项均不相同,而它们的对差却相同。都是:正负 2、4、6、8、10、12、14、16等。所有公差为1的偶数格幻方数列,其对差数列都是正负 1、3、5、7、9、11、 13、15等。6.1.2.2 公差为N的幻方数列,其对差数列各数是公差为1的幻方数列对差各数的N倍
15、如 1、3、5、7、9、11、13、15等和 2、4、6、8、10、12、14、16 等幻方数列,它们的公差都是 2,其对差都是:正负4、8、12、16等。再如 1、4、7、10、13、16、19、22、25等和 2、5、8、11、14、17、20、23、26等,它们的公差是 3,对差都是:正负 6、12、18、24等。 因此,我们把公差为1的自然数列幻方的对差数列作为基本对差数列。其它系列的对差均可由此推算出来。6.1.3 对差的还原我们知道在一个既定的幻方数列中,每对的值(大小数之和)i是相同的。知道了两数之和、两数之差,就可用心算算出这两个数来。即:(i+对差)十2二大数(正对差);(i
16、 -对差)十2 =小数(负对差)求出其中任一数,i减去它,就得另一数。相同的对差,有不同的i值,就可还原成很多不同的解。所以用“对差”解 得的幻方可还原为同一特性幻方数列的无数个解。例如图一的“对差图”可还原为图二的几个解。2943105111813753864161412618729151017i=10i=12i=28(图二) 其中,中心数Z = L2。图一是公差为1幻方数列的“对差图”。也可用它还原成公差为2的如图三a、b。也可还原成公差为3的,如图三c、do-6+8-2+40-4+2-8+6317713951111541881410612216对差图a.i=18b.i=204251019
17、13716122c.i=26526112014817223d.i=28(图三)它们是如何还原的呢?例如对差图中的 -6 ,图三a公差为2 , i为18,与-6 相应的对差是(6 2),应还原为18- 6 2 “2=3, 6应还原为18-3=15。再如图三d,公差为3,i为28,所以-6还原为28- 6 3 “2=5, 6还原 为28-5=23,依次类推。6.2 奇阶幻方解法6.2.1 麦哲里克(Meziriac )法:在第一行居中的方格内放1,依次向左上方填入2,3,4,如果左上方已有数字,则向下移一格继续填写。如下图用Merziral法生成的5阶幻方:17241815235714164613
18、2022101219213111825296.2.2 劳伯尔(Loubere)法:在居中的方格向上一格内放 1,依次向左上 方填入2, 3, 4,如果左上方已有数字,则向上移两格继续填写。如下图用Louberel法生成的7阶幻方:3039481101928384779182729466817263537514162534364513152433424442123324143,31222314049211206.2.3 马步(horse)法:先在任意一格内放入1。向左走1步,并下走2步 放入2 (称为马步),向左走1步,并下走2步放入3,依次类推放到n。在n的 下方放入n 1 (称为跳步),再按
19、上述方法放置到2n,在2n的下边放入2n 1 0如下图用Horse法生成的5阶幻方:775839201725334156684930117363442516785940212645435267695031127455453617796041223654637278705132137556472818806142234665738199715233147667482910816243245一般令矩阵1,1为向右走一步,向上走一步,1-1,0 1为向左走一步。则马步可以表示为 2x y,1,0】,丨-1,0小,“0,1】,0,-1山_.1,01,x “0,1 1JO,-1 M。对于 2x y 相应
20、的跳步可以为 2y, -y , x, -y, x, 3x,3x 3y。上面的的是x型跳步。Horse法生成的幻方为魔鬼幻方。6.3偶阶幻方解法6.3.1 海尔(Dela Hire )法:将n阶幻方看作一个矩阵,记为 A,其中的 第i行j列方格内的数字记为a i, j。在A内两对角线上填写1, 2, 3,,n,各行再填写1,2,3, n,使各行各列数字之和为n (n 1)/2。填写方法为:第1行从n到1填写,从第2行到第n/2行按从1到进行填写(第2行第1列填n ,第 2行第n列填1),从第n/2 - 1到第n行按n到1进行填写,对角线的方格内数字不 变。如下所示为6阶填写方法:15432662
21、3451123456653421624351154326如下所示为8阶填写方法(转置以后):1811888172227727633363665444455545555444366636332777227281881118将A上所有数字分别按如下算法计算,得到B,其中bi,j二n a i, j -1,则A - B为目标幻方(A为A的转置矩阵)。如下图用Hire法生成的8阶幻方:163656059588561011125354154941181920452247483326272829383940323938363727262524474345204618171650545312115595776
22、261432646.3.2 斯特拉兹(Ralph Strachey )法(单偶):将n阶单偶幻方表示为4m+ 2 阶幻方。将其等分为四分,成为如下图所示 A、B、C、D四个2m 1阶奇数幻 方。aJC_A用1至2m 1填写成 2m 1 2阶幻方;B用2m 1 2 1至2 2m 1 2填写 成2m 1阶幻方;C用2 2m 1 2 1至3 2m 1 2填写成2m 1阶幻方;D用3 2m 1 2 1至4 2m 1 2填写成2m 1阶幻方;在A中间一行取m个小格, 其他行左侧边缘取m1列,将其与D相应方格内交换;B与C接近右侧m1列 相互交换。如下图用Strachey法生成的6阶幻方:351626192433272123253192222720828331710153053412141643629131811633 Spring法(双偶):将n阶双偶幻方表示为4m阶幻方。将n阶幻方看作一个矩阵,记为 A,其中的第i行j列方格内的数字记为 a i, j。先令a i, j =
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 甲方竞选发言稿
- 协会发言稿范文
- 合理膳食知识培训
- 蝴蝶儿童舞蹈课件
- 愿望体验动力课件
- 二零二五年度宾馆会议室租赁合同书-商务会议室租赁及多媒体服务合同
- 二零二五版特种光纤光缆采购合同范本
- 二零二五年抵押车借款及车辆检测服务合同样本
- 2025拆除违章建筑与安全风险评估合同
- 二零二五年电商代运营产品上架与销售策略合同
- 2024-2025学年广东省深圳市南山区七年级(下)期末语文试卷
- 【高考真题】2025年高考英语真题试卷(北京卷)(含答案)
- 展览会布展工程质量保证措施
- Lesson9ChinasMostFamous“Farmer”课件-冀教版九年级英语上册
- 危险化学品应急演练计划
- 2025秋部编版(2024)八年级上册语文上课课件 第六单元 阅读综合实践
- 电厂设备清洁管理制度
- 2025至2030年中国继电保护及自动化设备行业市场现状调查及发展趋向研判报告
- 关于医院“十五五”发展规划(2026-2030)
- 单元整体设计下教、学、评一体化的实施策略
- 云仓代发货合同协议书
评论
0/150
提交评论