




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、the creation of man precedes the creation.悉心整理助您一臂(页眉可删)有关高中数学说课稿四篇 高中数学说课稿 篇1一、教材分析(一)地位与作用幂函数选自高一数学新教材必修1第2章第3节。是基本初等函数之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。从教材的整体安排看,学习了解幂函数是为了让学生进一步获得比较系统的函数知识和研究函数的方法,为今后学习三角函数等其他函数打下良好的基础在初中曾经研究过yx,yx2,yx1三种幂函数。这节内容,是对初中有关内容的进一步的概括、归纳与发展,是与幂有关知识的高度升华本节内容之后, 将把指数函数,对数函数,幂
2、函数科学的组织起来,体现充满在整个数学中的组织化,系统化的精神。让学生了解系统研究一类函数的方法这节课要特别让学生去体会研究的方法,以便能将该方法迁移到对其他函数的研究(二)学情分析(1)学生已经接触的函数,确立利用函数的定义域、值域、奇偶性、单调性研究一个函数的意识 ,已初步形成对数学问题的合作探究能力。(2)虽然前面学生已经学会用描点画图的方法来绘制指数函数,对数函数图像,但是对于幂函数的图像画法仍然缺乏感性认识。(3)学生层次参差不齐,个体差异比较明显。二、目标分析新课标指出“三维目标”是一个密切联系的有机整体。(一)教学目标(1)知识与技能使学生理解幂函数的概念,会画幂函数的图象。让学
3、生结合这几个幂函数的图象,理解幂函图象的变化情况和性质。(2)过程与方法让学生通过观察、总结幂函数的性质,培养学生概括抽象和识图能力。使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力。(3)情感态度与价值观通过熟悉的例子让学生消除对幂函数的陌生感从而引出概念,引起学生注意,激发学生的学习兴趣。利用多媒体,了解幂函数图象的变化规律,使学生认识到现代技术在数学认知过程中的作用,从而激发学生的学习欲望。培养学生从特殊归纳出一般的意识,培养学生利用图像研究函数奇偶性的能力。并引导学生发现数学中的对称美,让学生在画图与识图中获得学习的快乐。(二)重点难点根据我对本节课的内容的
4、理解,我将重难点定为:重点:从五个具体的幂函数中认识概念和性质难点:从幂函数的图象中概括其性质。三、教法、学法分析(一)教法教学过程是教师和学生共同参与的过程,教师要善于启发学生自主性学习,充分调动学生的积极性、主动性,要有效地渗透数学思想方法,努力去提高学生素质。根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法。1、引导发现比较法因为有五个幂函数,所以可先通过学生动手画出函数的图象,观察它们的解析式和图象并从式的角度和形的角度发现异同,并进行比较,从而更深刻地领会幂函数概念以及五个幂函数的图象与性质。2、借助信息技术辅助教学由于多媒体信息技术能具有形象生动易吸
5、引学生注意的特点,故此,可用多媒体制作引入情境,将学生引到这节课的学习中来。再利用几何画板画出五个幂函数的图象,为学生创设丰富的数形结合环境,帮助学生更深刻地理解幂函数概念以及在幂函数中指数的变化对函数图象形状和单调性的影响,并由此归纳幂函数的性质。3、练习巩固讨论学习法这样更能突出重点,解决难点,使学生既能够进行深入地独立思考又能与同学进行广泛的交流与合作,这样一来学生对这五个幂函数领会得会更加深刻,在这个过程中学生们分析问题和解决问题的能力得到进一步的提高,班级整体学习氛氛围也变得更加浓厚。(二)学法本节课主要是通过对幂函数模型的特征进行归纳,动手探索幂函数的图像,观察发现其有关性质,再改
6、变观察角度发现奇偶函数的特征。重在动手操作、观察发现和归纳的过程。由于幂函数在第一象限的特征是学生不容易发现的问题,因此在教学过程中引导学生将抽象问题具体化,借助多媒体进行动态演化,以形成较完整的知识结构。四、教学过程分析(一)教学过程设计(1)创设情境,提出问题。 新课标指出:“应该让学生在具体生动的情境中学习数学”。在本节课的教学中,从我们熟悉的生活情境中提出问题,问题的设计改变了传统目的明确的设计方式,给学生最大的思考空间,充分体现学生主体地位。问题1:下列问题中的函数各有什么共同特征?是否为指数函数?由学生讨论,总结,即可得出:pw,sa2,v=a,as1/2,vt1这时学生观察可能有
7、些困难,老师提示可以用x表示自变量,用y表示函数值,上述函数式变成:都是自变量的若干次幂的形式。都是形如的函数。揭示课题:今天这节课,我们就来研究:幂函数(一)课堂主要内容(1)幂函数的概念幂函数的定义。一般地,函数叫做幂函数,其中x 是自变量,a是常数。幂函数与指数函数之间的区别。幂函数底数是自变量,指数是常数;指数函数指数是自变量,底数是常数。(2)几个常见幂函数的图象和性质由同学们画出下列常见的幂函数的图象,并根据图象将发现的性质填入表格根据上表的内容并结合图象,总结函数的共同性质。让学生交流,老师结合学生的回答组织学生总结出性质。以上问题的设计意图:数形结合是一个重要的数学思想方法,它
8、包含以数助形,和以形助数的思想。通过问题设计让学生着手实际,借助行的生动来阐明幂函数的性质。教师讲评:幂函数的性质所有的幂函数在(0,)上都有定义,并且图像都过点(1,1)如果a0,则幂函数的图像通过原点,并在区间0,)上是增函数如果a0,则幂函数在(0,)上是减函数,在第一象限内,当x从右边趋向于原点时,图像在y轴右方无限地趋近y轴;当趋向于时,图像在x轴上方无限地趋近轴当a为奇数时,幂函数为奇函数;当a为偶数时,幂函数为偶函数。以问题设计为主,通过问题,让学生由已经学过的指数函数,对数函数,描点作图得到五个幂函数的图像,但是我们应该知道绘制幂函数的图像比绘制指数函数和对数函数的图像更为复杂
9、,因为幂函数随着幂指数的轻微变化会出现较大的变化,因此,在描点作图之前,应引导学生对几个特殊的幂函数的性质先进行初步的探究,如分析函数的定义域,奇偶性等,在根据研究结果和描点作图画出图像,让学生观察所作图像特征,并由图象特征得到相应的函数性质,让学生充分体会系统的研究方法。同时学生对于归纳性质这一环节相对指数函数,对数函数的性质,学生会有更大的困难。因此,教学中只须对他们的图像与基本性质进行认识,而不必在一般幂函数上作过多的引申和介绍。在教学中,采用从具体到一般,再从一般到具体的安排。通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对知识识的再次深化。(3)当堂训练,巩
10、固深化例题和练习题的选取应结合学生认知探究,巩固本节课的重点知识,并能用知识加以运用。本节课选取主要选取了两道例题。例1是课本上的例题:证明f(x)=x1/2在(0,)上是增函数。这题先从“形”的角度判断函数的单调区间和单调性,再用到定义从“数”的角度对函数的单调性进行推理论证,培养学生的数形结合的数学思想和解决问题的专业素养。例2是补充例题,主要培养学生根据体例构造出函数,并利用函数的性质来解决问题的能力,从而加深学生对幂函数及其性质的理解。注意:由于学生对幂函数还不是很熟悉,所以在讲评中要刻意体现出幂函数yx1。3是增函数与yx5/4的图像的画法,即再一次让学生体会根据解析式来画图像解题这
11、一基本思路(4)小结归纳,回顾反思。 小结归纳不仅是对知识的简单回顾,还要发挥学生的主体地位,从知识、方法、经验等方面进行总结。我设计了三个问题:(1)通过本节课的学习,你学到了哪些知识?(2)通过本节课的学习,你最大的体验是什么?(3)通过本节课的学习,你掌握了哪些技能?(二)作业设计 作业分为必做题和选做题,必做题对本节课学生知识水平的反馈,选做题是对本节课内容的延伸与,注重知识的延伸与连贯,强调学以致用。通过作业设置,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展、合作探究的学习氛围的形成 我设计了以下作业:(1)必做题(2)选做题(三
12、)板书设计板书要基本体现整堂课的内容与方法,体现课堂进程,能简明扼要反映知识结构及其相互联系;能指导教师的教学进程、引导学生探索知识;通过使用幻灯片辅助板书,节省课堂时间,使课堂进程更加连贯。五、评价分析学生学习的结果评价当然重要,但是更重要的是学生学习的过程评价。我采用及时点评、延时点评与学生互评相结合,全面考查学生在知识、思想、能力等方面的发展情况,在质疑探究的过程中,评价学生是否有积极的情感态度和顽强的理性精神,在概念反思过程中评价学生的归纳猜想能力是否得到发展,通过巩固练习考查学生对幂函数是否有一个完整的集训,并进行及时的调整和补充。 以上就是我对本节课的理解和设计,敬请各位专家、评委
13、批评指正。谢谢!高中数学说课稿 篇2一、教材分析(说教材):1. 教材所处的地位和作用:本节内容在全书和章节中的作用是: 是 中数学教材第 册第 章第 节内容。在此之前学生已学习了 基础,这为过渡到本节的学习起着铺垫作用。本节内容是在 中,占据 的地位。以及为其他学科和今后的学习打下基础。2. 教育教学目标:根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:(1)知识目标:(2)能力目标:通过教学初步培养学生分析问题,解决实际问题,读图分析,收集处理信息,团结协作,语言表达能力以及通过师生双边活动,初步培养学生运用知识的能力,培养学生加强理论联系实际的能力,(3)情感目标:
14、通过 的教学引导学生从现实的生活经历与体验出发,激发学生学习兴趣。3. 重点,难点以及确定依据:下面,为了讲清重难上点,使学生能达到本节课设定的目标,再从教法和学法上谈谈:二、教学策略(说教法)1. 教学手段:如何突出重点,突破难点,从而实现教学目标。在教学过程中拟计划进行如下操作:教学方法。基于本节课的特点: 应着重采用 的教学方法。2. 教学方法及其理论依据:坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,采用学生参与程度高的学导式讨论教学法。在学生看书,讨论的基础上,在老师启发引导下,运用问题解决式教法,师生交谈法,图像信号法,问答式,课堂讨论法。在采用问答法时,特别注
15、重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情。有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中积极培养学生学习兴趣和动机,明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。3. 学情分析:(说学法)(1)学生特点分析:中学生心理学研究指出,高中阶段是(查同中学生心发展情况)抓住学生特点,积极采用形象生动,形式多样的教学方法和学生广泛的积极
16、主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。生理上表少年好动,注意力易分散(2) 知识障碍上:知识掌握上,学生原有的知识 ,许多学生出现知识遗忘,所以应全面系统的去讲述;学生学习本节课的知识障碍, 知识 学生不易理解,所以教学中老师应予以简单明白,深入浅出的分析。(3)动机和兴趣上:明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力最后我来具体谈谈这一堂课的教学过程:4. 教学程序及设想:(1)由 引入:把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”继而紧张的沉思,期待录找理由和
17、证明过程。在实际情况下学习可以使学生利用已有的知识与经验,同化和索引出当肖学习的新知识,这样获取知识,不但易于保持,而且易于迁移到陌生的问题情境中。(2)由实例得出本课新的知识点(3)讲解例题。在讲例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于学生的思维能力。(4)能力训练。课后练习使学生能巩固羡慕自觉运用所学知识与解题思想方法。(5)总结结论,强化认识。知识性的内容小结,可把课堂教学传授的知识尽快化为学生的素质,数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐步培养学生良好的个性品质目标。(6)变式延伸,进行重构,重视课本例
18、题,适当对题目进行引申,使例题的作用更加突出,有利于学生对知识的串联,累积,加工,从而达到举一反三的效果。(7)板书(8)布置作业。针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提高,教学程序:(一)课堂结构:复习提问,导入讲授课,课堂练习,巩固新课,布置作业等五部分高中数学集合教学反思集合这章内容,教学参考书上安排的课时为五课时,我们的导学案也是安排五课时,实际教学时,由于对学生的实际情况估计不足,第一课时的导学案用了两课时才完成。集合这一章的特点是概念不多,但这章所涉及到的内容很广,学生学习_内容时,不仅要理解_的概念,还要理解与_内容相关联的其他内容,这些内
19、容有初中学习过的内容、有生活中的方方面面的相关知识,再加上高中学习方法与初中不同,逻辑思维能力要求较高,因此学生感觉学起来比较困难。针对这种情况,我在实际教学时,首先要求学生准确理解概念,如:集合的元素具有三个性质:确定性、互异性、无序性。集合的关系、运算等都是从元素的角度定义的,所以解集合问题时,教会学生对元素的性质进行分析,反复训练,让学生通过实例体会这三个性质。第二,掌握相关的符号语言、venn图,正确使用列举法、描述法表示集合,特别要注意用描述法表示集合时,集合中的元素是什么,这是一个教学难点。第二个难点是集合的运算交集和并集。突破难点充分运用数形结合思想,集合间的关系和运算,以数形结
20、合思想为指导,借助图形思考,可以使各集合间的关系直观明了,使抽象的集合运算建立在直观的基础上,使解题思路清晰明朗,直观简捷,有利于问题的解决。第三,指导学生理解并掌握自然语言、符号语言、图形语言这三种语言,灵活准确地进行语言转换,可以帮助学生提高分析问题,解决问题的能力。第四,集合问题涉及到的其他内容,遇到了讲透,不拓展。高中数学说课稿 篇3一、教材分析集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。本节课主要分为两个部分,一是理解集合的定义及一些基本特征
21、。二是掌握集合与元素之间的关系。二、教学目标1、学习目标(1)通过实例,了解集合的含义,体会元素与集合之间的关系以及理解“属于”关系;(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;2、能力目标(1)能够把一句话一个事件用集合的方式表示出来。(2)准确理解集合与及集合内的元素之间的关系。3、情感目标通过本节的把实际事件用集合的方式表示出来,从而培养数学敏感性,了 解到数学于生活中。三、教学重点与难点重点 集合的基本概念与表示方法;难点 运用集合的两种常用表示方法列举法与描述法,正确表示一些简单的集合;四、教学方法(1)本课将采用探究式教学
22、,让学生主动去探索,激发学生的学习兴趣。并分层教学,这样可顾及到全体学生,达到优生得到培养,后进生也有所收获的效果;(2)学生在老师的引导下,通过阅读教材,自主学习、思考、交流、讨论和概括,从而完成本节课的教学目标。五、学习方法(1)主动学习法:举出例子,提出问题,让学生在获得感性认识的同时,教师层层深入,启发学生积极思维,主动探索知识,培养学生思维想象 的综合能力。(2)反馈补救法:在练习中,注意观察学生对学习的反馈情况,以实现“培优扶差,满足不同。”六、教学思路具体的思路如下复习的引入:讲一些集合的相关数学及相关数学家的经历故事!这可以让学生更加了解数学史从何使学生对数学更加感兴趣,有助于
23、上课的效率!因为时间关系这里我就不说相关数学史咯。一、 引入课题军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念集合,即是一些研究对象的总体。二、 正体部分学生阅读教材,并思考下列问题:(1)集合有那些概念?(2)集合有那些符号?(3)集合中元素的特性是什么?(4)如何给集合分类?(一)集合的有关概念(1)对象:我们可以感觉到的客观存在以及我们思想中的事物或抽象符号,都可以称作对象.(
24、2)集合:把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合.(3)元素:集合中每个对象叫做这个集合的元素.集合通常用大写的拉丁字母表示,如a、b、c、?元素通常用小写的拉丁字母表示,如a、b、c、?1. 思考:课本p3的思考题,并再列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题。2、元素与集合的关系(1)属于:如果a是集合a的元素,就说a属于a,记作aa。(举例)集合a=2,3,4,6,9a=2 因此我们知道 aa(2)不属于:如果a不是集合a的元素,就说a不属于a,记作a?a要注意“”的方向,不能把aa颠倒过来写. (举例
25、)集合a=3,4,6,9a=2 因此我们知道a?a3、集合中元素的特性(1)确定性:给定一个集合,任何对象是不是这个集合的元素是确定的了.(2)互异性:集合中的元素一定是不同的.(3)无序性:集合中的元素没有固定的顺序.4、集合分类根据集合所含元素个属不同,可把集合分为如下几类:(1)把不含任何元素的集合叫做空集(2)含有有限个元素的集合叫做有限集(3)含有无穷个元素的集合叫做无限集注:应区分?,?,0,0等符号的含义5、常用数集及其表示方法(1)非负整数集(自然数集):全体非负整数的集合.记作n(2)正整数集:非负整数集内排除0的集.记作n_或n+(3)整数集:全体整数的集合.记作z(4)有
26、理数集:全体有理数的集合.记作q(5)实数集:全体实数的集合.记作r注:(1)自然数集包括数0.(2)非负整数集内排除0的集.记作n_或n+,q、z、r等其它数集内排除0的集,也这样表示,例如,整数集内排除0的集,表示成z_(二)集合的表示方法我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。(1) 列举法:把集合中的元素一一列举出来,写在大括号内。如:1,2,3,4,5,x2,3x+2,5y3-x,x2+y2,?;例1(课本例1)思考2,引入描述法说明:集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。(2) 描述法:把集合中
27、的元素的公共属性描述出来,写在大括号内。 具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。如:x|x-32,(x,y)|y=x2+1,直角三角形,?;例2(课本例2)说明:(课本p5最后一段)思考3:(课本p6思考) 强调:描述法表示集合应注意集合的代表元素(x,y)|y= x2+3x+2与 y|y= x2+3x+2不同,只要不引起误解,集合的代表元素也可省略,例如:整数,即代表整数集z。辨析:这里的 已包含“所有”的意思,所以不必写全体整数。下列写法实数集,r也是错误的。说明:列举法与描述法各有优点,应该根据
28、具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。(三)课堂练习(课本p6练习)三、 归纳小结与作业本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了集合的常用表示方法,包括列举法、描述法。书面作业:习题1.1,第1- 4题高中数学说课稿 篇41. 教材分析1-1教学内容及包含的知识点(1) 本课内容是高中数学第二册第七章第三节两条直线的位置关系的最后一个内容。(2) 包含知识点:点到直线的距离公式和两平行线的距离公式。1-2教材所处地位、作用和前后联系本节课是两条直线位置关系的最后一个内容,在此之前,有对两
29、线位置关系的定性刻画:平行、垂直,以及对相交两线的定量刻画:夹角、交点。在此之后,有圆锥曲线方程,因而本节既是对前面两线垂直、两线交点的复习,又是为后面计算点线距离(在直线和圆锥曲线构成的组合图形中)提供一套工具。可见,本课有承前启后的作用。1-3教学大纲要求掌握点到直线的距离公式1-4高考大纲要求及在高考中的显示形式掌握点到直线的距离公式。在近年的高考中,通常以直线和圆锥曲线构成的组合图形为背景,判断直线和圆锥曲线的位置或构成三角形求高,涉及绝对值,直线垂直,最小值等。1-5教学目标及确定依据教学目标(1) 掌握点到直线的距离的概念、公式及公式的推导过程,能用公式来求点线距离和线线距离。(2
30、) 培养学生探究性思维方法和由特殊到一般的研究能力。(3) 认识事物之间相互联系、互相转化的辩证法思想,培养学生转化知识的能力。(4) 渗透人文精神,既注重学生的智慧获得,又注重学生的情感发展。确定依据:中华人民共和国教育部制定的全日制普通高级中学数学教学大纲(20_年4月第一版),基础教育课程改革纲要(试行),高考考试说明(20_年)1-6教学重点、难点、关键(1) 重点:点到直线的距离公式确定依据:由本节在教材中的地位确定(2) 难点:点到直线的距离公式的推导确定依据:根据定义进行推导,思路自然,但运算繁琐;用等积法推导,运算较简单,但思路不自然,学生易被动,主体性得不到体现。分析“尝试性题组”解题思路可突破难点(3)关键:实现两个转化。一
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年电工(初级)证考试100题
- 2025车辆双方买卖合同范本
- 2025年印刷管理试题及答案
- 2025年中医产后修复试卷及答案
- 2025年国有企业招聘试卷及答案
- 2025年电路自动化试卷及答案
- 2025年哈利波特的试卷及答案
- 工程钻探施工方案(3篇)
- 工程现场设计预算方案(3篇)
- 工程物资准备方案范文(3篇)
- 重庆市南开中学高2026届高三第一次质量检测+数学答案
- GJB135B-2021合成航空发动机润滑油规范
- 商业航天行业深度报告:政策技术需求共振商业航天赛道加速
- 营造林技能竞赛试题及答案
- 浴场委托管理合同
- PFEP培训资料 -让物料流动起来-为每个零件制定计划和创建一个物流系统
- 《高级财务管理(第三版)》配套教学课件
- QGDW 11162-2014-变电站监控系统图形界面规范
- 平均站间距计算方法
- 信息技术ppt课件完整版
- 复旦大学大学物理热学课件Heat-Ch1-partI
评论
0/150
提交评论