




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、会计学1全概率公式与贝叶斯公式全概率公式与贝叶斯公式2定理1 (全概率公式)若事件A1,A2,构成一个完备事件组并且都具有正概率,则对任何一个事件B,有iiiP BP A P B A( )() (|)证:A1,A2,两两互斥,故A1B,A2B,两两互斥BB且iiBA()iiA B由加法法则iiP BP A B( )()再由乘法法则iiiP A BP A P B A()() (|)iiiP BP A P B A( )() (|)故第1页/共25页3定理2 (贝叶斯公式)若事件A1,A2,构成一个完备事件组,且都具有正概率,则对任何一个概率不为零的事件B,有mmmiiiP AP B AP A |B
2、P A P B A() (|)()() (|)mmP A BP ABP B证:()(|)( )mmiiiP AP B AP A P B A() (|)() (|)各原因下条件概率已知 求事件发生概率求是某种原因造成得概率 事件已发生全概率贝叶斯第2页/共25页4例2 设5支枪中有2支未经试射校正,3支已校正。一射手用校正过的枪射击,中靶率为0.9,用未校正过的枪射击,中靶率为0.4。(1)该射手任取一支枪射击,中靶的概率是多少?(2)若任取一支枪射击,结果未中靶,求该枪未校正的概率。解:设A表示枪已校正,B表示射击中靶3P A5( ),则2P A5( )P B A0 9(|).P B A0 1
3、(|).P B A0 4(|).P B A0 6(|).1 P BP A P B AP A P B A( ) ( )( ) (|)( ) (|)320 90 455.0 7 .P A P B A2 P A BP A P B AP A P B A( ) (|)( ) (|)( ) (|)( ) (|)20 65230 60 155.0 8 .第3页/共25页5例3 有三个同样的箱子,A箱中有4个黑球1个白球,B箱中有3个黑球3个白球,C箱中有3个黑球5个白球。现任取一箱,再从中任取一球,求(1)此球是白球的概率(2)若取出的是白球,求它取自B箱的概率。解:用A、B、C表示A、B、C三个箱子取球用
4、D表示取出的是白球。则A、B、C是完备事件组。1P AP BP C3( )( )( )且115P D AP D BP D C528(|)(|)(|)第4页/共25页61 P DP A P D AP B P D BP C P D C( ) ( )( ) (|)( ) (|)( ) (|)111115353238531200 442.P B P D B2 P B DP A P D AP B P D BP C P D C( ) (|)( ) (|)( ) (|)( ) (|)( ) (|)113211111535323820530 378.第5页/共25页74P A0 410( ).例4 (抽签的公
5、正性)设10支签中有4支难签。甲、乙、丙依次不放回的抽取。求各人抽到难签的概率。解:分别用A、B、C表示甲、乙、丙抽到难签。P BP A P B AP A P B A( )( ) (|)( ) (|)436410910936900 4 .P CP AB P C ABP AB P C ABP AB P C ABP AB P C AB( )() (|)() (|)() (|)() (|)P A P B A P C ABP A P B A P C ABP A P B A P C ABP A P B A P C AB( ) (|) (|)( ) (|) (|)( ) (|) (|)( ) (|) (|
6、)432463643643654109810981098109810982887200 4 .第6页/共25页8例5 设验血诊断某种疾病的误诊率仅为5,即若用A表示验血阳性,B表示受验者患病,则P A BP A B5(|)(|)%。若受检人群中仅有0.5患此病,即P(B)=0.005。求一个验血阳性的人确患此病的概率。P B P A BP B AP B P A BP B P A B解:( ) (|)(|)( ) (|)( ) (|)0 005 0 950 005 0 950 995 0 05.0 087.若有10000人受检,患病者仅50人,其中验血阳性约47.5人而9950健康人中,验血阳性
7、者为99500.05497.5人第7页/共25页97 7 独立试验概型独立试验概型(一一)事件的独立性事件的独立性故若A独立于B,则B也独立于A,称事件A与事件B相互独立。P AP A B( )(|)若P ABP B()( )P ABP BP A()( )( )则P B A(|)关于独立性有如下性质:定义1 若事件发生的可能性不受事件B发生与否的影响,即P(A|B)=P(A),则称事件A独立于事件B。定义2 若n (n2)个事件A1,An中任何一个事件发生的可能性都不受其它一个或几个事件发生与否的影响,称A1,A2,An相互独立。第8页/共25页10(1)事件A与B独立的充分必要条件是P(AB
8、)=P(A)P(B)证:必要性若A与B中有一个事件概率为零,结论成立。设A与B的概率都不为零,由独立性P(B|A)=P(B)而由乘法法则可得P(AB)=P(A)P(B|A)=P(A)P(B)充分性设P(B)0,则P ABP A BP B()(|)( )P A P BP B( ) ( )( )=P(A)即A与B独立。第9页/共25页11(2)若事件A与B独立,则A与B, A与B, A与B中的每一对事件都相互独立。证:P ABP AAB()()P AP AB( )()P A P B( ) ( )类似可证其它两对事件独立。=P(A)-P(A)P(B)=P(A)(1-P(B)由(1)可知,A与B独立。
9、第10页/共25页12(3)若事件A1,A2,An相互独立,则有P(A1An)=P(A1)P(An)证:P(A1An)P(A1)P(A2|A1)P(An|A1An-1)12n1n1n4A AAP AA1P AP A若事件相互独立,则有( ),.,(.)(). ()而P(A2|A1)=P(A2),P(An|A1An-1)=P(An)故P(A1An)P(A1)P(A2)P(An)n1n1由于A ,.,A 对立, A ,.证, A:也对立1nnP AA1(.)1P(A +.+A )1n1 P AA(.) 1n1 P AP A(). () 第11页/共25页13例1 设甲、乙两射手独立地射击同一目标,
10、他们击中目标的概率分别为0.9和0.8。求一次射击中,目标被击中的概率。解:分别用A,B表示甲、乙击中目标。目标被击中,即至少有一人击中,即A+BA与B独立。故P(A+B)=P(A)+P(B)-P(AB)=P(A)+P(B)-P(A)P(B)=0.9+0.8-0.90.8=0.98或由性质(4)=0.98P AB1 P A P B()( ) ( ) =1-0.10.2第12页/共25页14例2 一名士兵用步枪射击飞机,命中率为0.004。求:(1)若250名士兵同时射击,飞机被击中的概率。(2)多少名士兵同时射击,才能使飞机被击中的概率达到99?解:用Ai表示第i名士兵击中飞机,P(Ai)0.
11、004125012501 P AA1 P AP A( ) (.)(). () 2501 0 996. 0 63.2n( )设要 名士兵同时射击1n1nP AA1 P AP A(.)(). ()n1 0 996. 0.99即0.996n0.010 01n0 996lg .lg .故1150第13页/共25页15例3 甲、乙、丙3部机床独立工作,由一个工人照管,某段时间内它们不需要工人照管的概率分别为0.9,0.8及0.85。求在这段时间内有机床需要工人照管的概率以及机床因无人照管而停工的概率。解:用A、B、C分别表示在这段时间内机床甲、乙、丙不需要照管。则A、B、C相互独立,且P(A)=0.9P
12、(B)=0.8P(C)=0.85P ABC()P ABC()1 P ABC() 1 P A P B P C( ) ( ) ( ) 1 0 9 0 8 0 85. 0 388.P ABBCAC()P ABP BCP AC2P ABC()()()()0 1 0 20 2 0 150 1 0 152 0 1 0 2 0 15. 0 059.第14页/共25页16例4 图中开关a、b、c开或关的概率都是0.5,且各开关是否关闭相互独立。求灯亮的概率以及若已见灯亮,开关a与b同时关闭的概率。解:令A、B、C分别表示开关a、b、c关闭,D表示灯亮P(D)=P(AB+C)=P(AB)+P(C)-P(ABC)
13、=P(A)P(B)+P(C)-P(A)P(B)P(C)=0.50.5+0.5-0.50.50.5=0.625ABD,由于ABD=ABP ABDP AB DP D()(|)( )P ABP D()( )0 5 0 50 625.=0.4abc第15页/共25页17例5 甲、乙、丙三人独立射击一个目标,命中率分别为0.4,0.5,0.7,若只有一人击中,目标被摧毁的概率是0.2,若二人击中,则目标被摧毁的概率是0.6,若三人都击中,目标一定被摧毁。若目标被摧毁,求它是一人摧毁的概率。解:用Ai表示有i个人击中目标,i=0,1,2,3用B表示目标被摧毁。P(B|A0)=0P(B|A1)=0.2P(B
14、|A2)=0.6P(B|A3)=1P(A0)=0.60.50.3=0.09P(A1)=0.40.50.3+0.60.50.3+0.60.50.7=0.36P(A2)=0.40.50.3+0.40.50.7+0.60.50.7=0.41P(A3)=0.40.50.7=0.143iii0P BP A P B A( )() (|)0.458第16页/共25页18(二二)独立试验序列概型独立试验序列概型进行n次试验,若任何一次试验中各结果发生的可能性都不受其它各次试验结果发生情况的影响,则称这n次试验是相互独立的。在同样条件下重复进行试验的数学模型称为独立试验序列概型。若在每次试验中只关心某事件A发生
15、或不发生,且每次试验结果与其它各次试验结果无关,即在每次试验中事件A发生的概率都是p(0p1)。这样的n次重复试验称为n重贝努里试验。第17页/共25页19例6 一批产品的废品率为p,(0p1)重复抽取n次,求有k次取到废品的概率。解:设所求事件的概率为P(B),事件B由下列m个互不相容的事件组成:B1=(废,废,正,正)B2=(废,废,正,废,正,正)Bm=(正,正,废,废)P(B1)=P(B2)=P(Bm)=pk(1-p)n-kknmC ,而故mkkn ki1ni 1P BP BmP BC P 1 P( )()()()第18页/共25页20一般地,有如下的定理:解:设B表示至少有两件一级品
16、1010k 2P BPk( )( )1-P10(0)-P10(1)1019101 0 4C0 6 0 4. 0 998.nkkn knn1AppnkP (k)P kC p qk0 1nq1 p 定理贝努里定理 设一次试验中事件 发生的概率为 ,(0 1),则 重贝努里试验中,事件A恰好发生次的概率为其中()( ),(, ,., )例7 一条自动生产线上产品的一级品率为0.6,现在检查了10件,求至少有两件一级品的概率。第19页/共25页21例8 某药物对某病的治愈率为0.8,求10位服药的病人中至少有6人治愈的概率。解:设A表示至少有6人治愈。1010k 6P APk( )( )P10(6)+
17、P10(7)+P10(8)+P10(9)+P10(10)664773882991010101010C 0 8 0 2C 0 8 0 2C 0 8 0 2C 0 8 0 20 8.0 97.而正好有8人治愈的概率为8821010P8C 0 8 0 2( ).=0.302第20页/共25页22例9 在四次独立试验中,A至少出现一次的概率为0.59,求A至多出现一次的概率。解:设在一次试验中A出现的概率为p则A至少出现一次的概率为4444k 1P k1 P 011 p0 59( )( )(). 故(1-p)4=0.411-p=0.8p=0.2A至多出现一次的概率为:P4(0)+P4(1)41341
18、pC p 1 p()()=0.8241340 8C0 2 0 8.第21页/共25页23例10 (分赌注问题)甲、乙各下注a元,以猜硬币方式赌博,五局三胜,胜者获得全部赌注。若甲赢得第一局后,赌博被迫中止,赌注该如何分?解法一:12每局双方获胜的可能性均为 。应按照比赛双方最终获胜的可能性分赌注。即在余下的四局中甲赢得2局以上即可。甲最终获胜的概率为P4(2)+P4(3)+P4(4)2234234411111CC22222 1116516乙胜的概率为,赌注应按11:5的比例分配。第22页/共25页24解法二:一般情况下不必比到第五局,有一方赢得三局即中止。甲方在第三局结束赌博获得胜利的概率为231P B2()14甲方在第四局结束赌博获胜的概率为142111P BC222()14甲方在第五局结束赌博获胜的概率为21531 11P
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 合作协议书范文锦集十篇
- 2025河南中医药大学招聘高层次人才考前自测高频考点模拟试题参考答案详解
- 2025年溴氨蓝项目合作计划书
- 2025年云南事业单位真题
- 2025年浸渍、涂布或包覆处理纺织物项目合作计划书
- 2025徽商银行宣城分行社会招聘模拟试卷参考答案详解
- 2025年河北承德平泉市公开招聘社区工作者97人考前自测高频考点模拟试题完整参考答案详解
- 2025贵州金沙能源投资集团有限公司模拟试卷(含答案详解)
- 2025北京建筑大学第二批招聘24人考前自测高频考点模拟试题及答案详解(历年真题)
- 2025安徽淮南高新区部分学校引进紧缺专业人才招聘39人考前自测高频考点模拟试题带答案详解
- 2024年度江西省高校教师资格证之高等教育心理学题库与答案
- 朝花夕拾-无常解析
- 《人工智能基础第2版》全套教学课件
- 365天艾斯宾浩记忆表格(打印版-背专业课)
- 《名著阅读 艾青诗选》核心素养课件1(第3课时)
- DB14-T 2779-2023 营造林工程监理规范
- 污水处理厂污泥处理处置投标方案
- 手机媒体概论(自考14237)复习必备题库(含真题、典型题)
- 陪诊师资格考试复习题库宝典(含答案)
- 中美关系新时代
- GB/T 17622-2008带电作业用绝缘手套
评论
0/150
提交评论