浙江--等比数列的前n项和_第1页
浙江--等比数列的前n项和_第2页
浙江--等比数列的前n项和_第3页
免费预览已结束,剩余4页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、等比数列的前 n 项和(第一课时)浙江省义乌中学 吴红琳教材:人民教育出版社全日制普通高级中学教科书(必修)数学第一册(上)一、教材分析从教材的编写顺序上来看,等比数列的前 n 项和是第三章“数列”第五节的内容,一方 面它是“等差数列的前 n 项和”与“等比数列”内容的延续、与前面学习的函数等知识也有 着密切的联系,另一方面它又为进一步学习“数列的极限”等内容作准备 .就知识的应用价值上来看,它是从大量数学问题和现实问题中抽象出来的一个模型,在 公式推导中所蕴涵的数学思想方法如分类讨论等在各种数列求和问题中有着广泛的应用;另 外它在如“分期付款”等实际问题的计算中也经常涉及到 .就内容的人文价

2、值上来看, 等比数列的前 n 项和公式的探究与推导需要学生观察、 分析、 归纳、猜想,有助于培养学生的创新思维和探索精神 , 是培养学生应用意识和数学能力的良好 载体教师教学用书安排“等比数列的前 n 项和”这部分内容授课时间 2 课时,本节课作为第 一课时,重在研究等比数列的前 n 项和公式的推导及简单应用,教学中注重公式的形成推导 过程并充分揭示公式的结构特征和内在联系 .二、教学目标 依据课程标准,结合学生的认知水平和年龄特点,确定本节课的教学目标如下: 知识与技能目标:理解等比数列的前 n 项和公式的推导方法;掌握等比数列的前 n 项和 公式并能运用公式解决一些简单问题过程与方法目标:

3、通过公式的推导过程,提高学生的建模意识及探究问题、分析与解决 问题的能力,体会公式探求过程中从特殊到一般的思维方法,渗透方程思想、分类讨论思想 及转化思想,优化思维品质情感与态度目标:通过经历对公式的探索,激发学生的求知欲,鼓励学生大胆尝试、勇 于探索、敢于创新,磨练思维品质,从中获得成功的体验,感受思维的奇异美、结构的对称 美、形式的简洁美、数学的严谨美三、教学重点和难点 重点:等比数列的前 n 项和公式的推导及其简单应用从教材体系来看,它为后继学习 提供了知识基础,具有承上启下的作用;从知识特点而言,蕴涵丰富的思想方法;就能力培 养来看,通过公式推导教学可培养学生的运用数学语言交流表达的能

4、力 .突出重点方法:“抓三线、突重点”,即 (一) 知识技能线:问题情境公式推导公式 运用;(二)过程与方法线 : 特殊到一般、猜想归纳 错位相减法等转化、 方程思想;(三) 能力线:观察能力数学思想解决问题能力灵活运用能力及严谨态度 .难点:等比数列的前 n项和公式的推导从学生认知水平来看,学生的探究能力和用数 学语言交流的能力还有待提高 . 从知识本身特点来看,等比数列前 n项和公式的推导方法和等 差数列的的前 n项和公式的推导方法可比性低,无法用类比的方法进行,它需要对等比数列的 概念和性质能充分理解并融会贯通,而知识的整合对学生来说恰又是比较困难的,而且错位 相减法是第一次碰到,对学生

5、来说是个新鲜事物 .突破难点手段:“抓两点,破难点”,即一抓学生情感和思维的兴奋点,激发他们的兴趣, 鼓励学生大胆猜想、积极探索,及时地给以鼓励,使他们知难而进;二抓知识选择的切入点, 从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给予适当的提示和指导 .四、教学方法 利用计算机和实物投影等辅助教学,采用启发和探究 -建构教学相结合的教学模式 .五、教学过程教学过程设计意图创设 情 境【漫画演示】 话说猪八戒自西天取经回到了高老庄,从高员外手里接 下了高老庄集团,摇身变成了 CEO可好景不长,便因资金 周转不灵而陷入了窘境,急需大量资金投入,于是就找孙悟 空帮忙悟空一口答应: “行

6、!我每天投资 100万元,连续一 个月( 30天),但是有一个条件是:作为回报,从投资的第 一天起你必须返还给我 1元,第二天返还 2元,第三天返还 4 元即后一天返还数为前一天的 2倍”八戒听了,心里打 起了小算盘: “第一天:支出 1元,收入 100万;第二天:支 出 2元,收入 100万,第三天:支出 4 元,收入 100万元; 哇,发财了 ”心 里越想越美再看看悟空的表情,心 里又嘀咕了: “这猴子老是欺负我,会不会又在耍我? ”【教师提问】 (1)假如你是高老庄集团企划部的高参,请你帮八戒分析 一下,按照悟空的投资方式, 30天后,八戒能吸纳多少投资? 又该返还给悟空多少钱?(2)

7、S30 1 2 22 23229 (观察数字特征,引出课题)依托市场经 济背景,运 用学生熟悉 的人物编拟 故事,以趣 引思,激发 学生学习热 情.探1.学生自主探究: S30 1 2 22 232292.解决情境问题3.师生共同探讨一般等比数列前 n项和:Sn a1 a2 a3an 1 an ?即 Sn a1 a1q a1q2a1qn 2 a1qn 1 ?方法 1:错位相减法领悟数学应 用价值从特殊到一 般, 从模仿 到创新,有 利于学生的 知识迁移和辨析 质 疑Sna1 a1q a1qa1qa1q23n 1 nqSna1qa1qa1qa1qa1q(1q)Sna1na1qa1(1n q)q1

8、Sn1qna1q1方法 2:提取公比q2n 2 n 1Sna1a1q a1qa1qa1qa1q(a1a1qn2 a1q )2 n 2 n 1n1a1 q( Sn a1q )(1 q)Sn a1 a1qn方法 3:利用等比定理 a2 a3 a4 a1 a2 a3 a2 a3ana1 a2an 1an q an 1Sn a1q (1 q)Sn a1 anq Sn an1口答:在公比为 q的等比数列 an 中(2)若 a11,q 1,则 Sn 2判断是非: 1 248( 2)n 11 (1 2n)12 1 222 232n1 (1 2n)12若 c0且c1,则2 2 n2462nc21 (c2)nc

9、ccc21c(1)若a1 2,q 1,则 Sn 1 3 33对公式的再认识(1)、对公比 q 的分类讨论(2)、公式中 n 的理解例 1已知an 是等比数列,请完成下表:题号a1qnanSn(1)12128(2)27238(3)29663能力提高通过学生个 别学习,互 相讨论,揭 示知识的内 在联系 . 通 过生生、师 生间的探 讨、合作, 培养学生的 洞察力增 强学生思维 的严谨性. 通过实物展 示学生解决 问题的方 法,破除思 维定势.剖析公式中 的基本量及 结构特征, 识记公式 .熟练公式运 用,着重强 调公式的选 择.提高例 2求等比数列 1 ,1,1, 1 , 的第 5 项到第 10

10、项的和2 4 8 16方法 1: 观察、发现: a5 a6a10 S10 S4 方法 2: 此等比数列的连续项从第 5 项到第 10 项构成 一个新的等比数列:首项为a5 16 ,公比为q 2 ,项数为 n 6 变式1:求11,21,31,41,5 1 的前n项和2 4 8 16 32 变式2:求1,2,3, 4, 5 的前 n项和(留作思考)2 4 8 16 32本例由书中 的例题改编 而成,一题 多解及变 式, 有利于 提高思维的 灵活性和梯 度.反思 拓 广(一)小结 引导学生从知识、思想、方法三个方面进行总结(二)思考“神舟六号 ”发射成功,某移动公司立即发出短信: “请你 把中国神六

11、发射成功的消息转发给 10 位朋友,并且注明您是 第 x 位接收此消息的 ”假定这家公司发出的 10 条短信中 的 x 值均为 1 ,以后每一位收到短信后将 x 值都增加 1,再将 短信发出据统计,所发短信中 x 的最大值为 10试问通过 这家公司最多发了多少条短信?从知识的归 纳进一步延 伸到思想方 法提炼,把 数学的学习 作为提高学 生数学素养 和文化水平 的有效途 径.作业 布 置(1)书面作业: 必做题:课本 P129 练习 3(1) 习题 3.5 1 选做题:画一个边长为 2cm的正方形 , 再将这 个正方形各边的中点相连得到第 2个正方形 , 依此类推 ,这样一共画了 10个正方形

12、, 求这 10 个正方形的面积的和(2)研究性作业:查阅 “芝诺悖论 ”并,从数列求和的角度加 以解释(参考网站 : /x2/042.htm)布置弹性作 业以使各个 层次的学生 都有所发 展. 提供参 考网站,便 于学生开展 自主学习.六、教学设计说明 1情境设置生活化 .本着新课程的教学理念,考虑到高一学生的心理特点以及初、高中教学的衔接,让学生 学生初步了解“数学来源于生活” , 采用动漫故事的形式创设问题情景,意在营造和谐、积 极的学习气氛,激发学生的探究欲 .2问题探究活动化 教学中本着以学生发展为本的理念,充分给学生想的时间、说的机会以及展示思维过程 的舞台,通过他们自主学习、合作探

13、究 , 展示学生解决问题的思想方法,共享学习成果,体验 数学学习成功的喜悦 . 通过师生之间不断合作和交流, 发展学生的数学观察能力和语言表达能 力,培养学生思维的发散性和严谨性 .3辨析质疑结构化在理解公式的基础上 , 及时进行正反两方面的“短、平、快”填空和判断是非练习 .通过 总结、辨析和反思,强化了公式的结构特征,促进学生主动建构,有助于学生形成知识模块, 优化知识体系 .4巩固提高梯度化例 1 采用表格形式 , 突出表现五个基本量“知三求二”的关系,通过公式的正用和逆用进 一步提高学生运用知识的能力; 例 2 由教科书中的例题改编而成, 并进行适当的变式 , 可以提 高学生的模式识别的能力,培养学生思

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论