版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、The net vibration cosAxt 1221 2 2 2 1 cos2AAAAA 2211 2211 1 coscos sinsin AA AA tg Review Superposition of vibration Chapter 2 Mechanical waves Waves: a disturbance travels away from its source. Water waves, sound waves, radio waves, X-rays Waves Mechanical Waves The disturbance is propagating throu
2、gh a medium. electromagnetic Waves Do not need a medium Waves Transverse Waves The medium oscillates perpendicular to the direction the wave is moving. Longitudinal Waves Water wave The medium oscillates in the same direction as the wave is moving sound wave Mechanical Waves The propagation of a dis
3、turbance in a medium. The conditions all the mechanical waves require: 1) Some source of disturbance 2) A medium that can be disturbed 3) Some physical mechanism through which particles can influence one another. The essence of mechanical waves: The disturbance is transferred through space, but the
4、matter does not. The propagation of the disturbance also means a transfer of energy. Waves on a String 11 2-1 harmonic waves The characteristic of harmonic waves Every medium element oscillates around the equilibrium position in simple harmonic motion, but the wave propagates away from the source of
5、 disturbance. The propagation of simple harmonic motion in space 2)The phase of the particle which oscillates later is smaller. medium disturbance v 18 y(x,t) = A cos(t kx) A = amplitude = angular frequency k = wave number = 2/ harmonic wave function Assuming: initial phase is zero at x=0 and t=0 Ge
6、nerally, The transverse displacement is not zero at x=0 and t=0 ( , )cos()y x tAtkx Phase constant Can be determined from the initial conditions. Simple harmonic vibration function: ( )cosAy tt The vibration y as a function of time t. 0 1 2 1 2 )(st )(cmx s1 The harmonic wave function: The wave func
7、tion y(x, t) represents the y coordinate of any point P located at position x at any time t. Two variables x and t. If t is fixed, the wave function y as a function of x, called waveform, defines a curve representing the actual geometric shape of the pulse at that time. ( , )cos()y x tAtkx Amplitude
8、 and Wavelength Wavelength Wavelength : The distance between identical points on the wave. Amplitude A Amplitude A: The maximum displacement of a point on the wave. A 19 Period and Velocity lPeriod T : The time for a point on the wave to undergo one complete oscillation. Speed u: The wave moves one
9、wavelength in one period, so its speed is u = / T. T u 21 T u Wave Properties. The speed of a wave is a constant that depends only on the medium, not on amplitude, wavelength or period (similar to SHM) u T T = 2 / and T are related ! = u T or = 2 u / or u / f Example 2-1-1 x y p u O x Suppose the ha
10、rmonic vibration function of origin at t )cos()( 00 tAty Find: the harmonic wave function of point P at t Solution: the time for the vibration to arrive point P is: u x t x y p u O x The vibration at point P at t is identical with that of point O at t-t )(cos),(),( 0 u x tAttoytxy Then we have the w
11、ave function of point P: Example 1-1-2 x y p u O x Suppose the harmonic vibration function of origin at t )cos()( 00 tAty Find: the harmonic wave function of point P at t The vibration at point P at t is identical with that of point O at t+t )(cos )(cos),(),( 0 0 u x tA u x tAttoytxy Therefore, the
12、harmonic wave function can be written as: )(cos) ,( 0 u x tAtxy Or: )(2cos) ,( 0 x T t Atxy )(2cos) ,( 0 u x tAtxy )( 2 cos) ,( 0 xutAtxy If the wave travels left, use x substitute x. u T 2 T = uT 2 u The parameters A, u of a certain planar cosine wave are known. Calculating t=0 from the moment of t
13、he following figure, 1)write the wave function taking O and P as the origin respectively. 2) Find the magnitude and direction of the speed at x1= / 8 and x2= 3/ 8 when t=0. y x x Po u y 8 8 3 Example 2-1-3 y x x Po u y 8 8 3 Solution: 1) taking O as the origin The vibration function of O is:)cos(),
14、0( 0 tAty When t=00cos)0, 0( 0 Aythen 2 0 The velocity of x=0 at t=0: 0sin)0, 0( 0 Av ? 0 1 2 1 2 )(st )(cmx s1 The simple harmonic vibration curve: The velocity at a certain time is the slope of the tangent line of that point. The harmonic wave curve (displacement as a function of x): u y x o t=t1
15、t=t2, t2t1 If the slope of a certain point of the curve y(x) 0, the velocity at this point 0 (the wave travels right wards) y x x Po u y 8 8 3 Solution: 1) taking O as the origin The vibration function of O is:)cos(), 0( 0 tAty When t=00cos)0, 0( 0 Aythen 2 0 The velocity of x=0 at t=0: 0sin)0, 0( 0
16、 Avthus0 2 Therefore, the vibration function of O is: ) 2 cos(), 0( tAty The wave function of x taking O as origin is: 2 )(cos), 0(),( u x tAttytxy 1) taking P as the origin y x x Po u y 8 8 3 The vibration function of P is:) cos(), 0( tAty When t=0cos)0, 0( Ay then Anyone is Ok, we choose )cos(), 0
17、( tAty The wave function of x taking P as origin is: )(cos),( u x tAtxy The wave function of x taking O as origin is: ( , )(0,)cos () 2 x y x tyttAt u The wave function of x taking P as origin is: ( , )cos () x y x tAt u We must identify the origin point clearly! The phase constants are different if
18、 we take various original points. 2) Find the magnitude and direction of the speed at x1= / 8 and x2= 3/ 8 when t=0. y x o u 8 8 3 The velocity at x point: ( , )cos () 2 x y x tAt u ( , ) sin () 2 y x tx vAt tu 2 sin 2 Atx Because the vibration is: The velocity at x point at t moment: 2 ( , )sin 2 v
19、 x tAtx Take x=/8, t=0 into the above equation: Av 2 2 ) 8 , 0( y x x Po u y 8 8 3 Along the negative y axis Take x=3/8, t=0 into the above equation: Av 2 2 ) 3 8 , 0( Along the positive y axis 2-2 wave speed / phase speed u The speed of a wave is a constant that depends only on the medium. u T and
20、T are related ! Note: the speed of the wave u is different from the vibration velocity of a certain medium element v. y v t The speed of a wave is a constant that depends only on the medium. A) Wave propagating in liquid, gas/ fluid B u B : bulk elastic modulus : the density of the medium B) Wave pr
21、opagating in solid 1) Transverse wave G u G : shear elastic modulus 2) longitudinal wave Y u Y : Young modulus 2-3 energy of harmonic waves Mechanical wave: The disturbance is propagating through a medium. disturbance Vibration state phase energy Energy of traveling harmonic waves The wave function:
22、 )(cos 0 u x tAy x y O AB x y The waveform (at t=t1): Segment AB in the medium The mass of AB:mx the mass density of the medium The kinetic energy of AB: 2 2 1 mvEk x y O AB x 2 )( 2 1 t y x )(sin 2 1 0 222 u x txA The potential energy of AB: l T T y O u y x x )(xlTE p T: tension 22 )()(yxl 2/12 )(1
23、 x y x )( 2 1 1 2 x y x )( 2 1 2 x y xTE p 2 )( 2 1 x y xT 2 )( 2 1 x y xT )(sin 2 1 0 2 2 2 2 u x t u xAT )(sin 2 1 0 222 u x txA T u )(sin 2 1 0 222 u x txAEE pk The magnitude and phase of kinetic energy and potential energy are identical at any time. Note: the energy difference between wave and vibration! x y a b waveform maxp E Maximum deformation Maximum velocit
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年右江民族医学院公开招聘教职人员控制数工作人员10人备考题库及一套参考答案详解
- 2026年宁波市江北区疾病预防控制中心公开招聘编制外辅助人员备考题库及一套参考答案详解
- 2026年临海市头门港中心幼儿园招聘备考题库及参考答案详解一套
- 2026年广州储能集团有限公司招聘备考题库及答案详解参考
- 业务活动内控制度
- 体育竞赛内控制度
- 采购人单位内控制度
- 如何建设内控制度
- 及时梳理并完善内控制度
- 园林绿化局内控制度
- T-ZJICA 1101-2024 算力中心智慧物业服务规范
- 签订劳动合同的注意事项
- 体育赛事组织团队职责分配
- 2024-2025学年上海市普陀区五年级(上)期末数学试卷(含答案)
- DG-TG08-12-2024 普通中小学建设标准
- 2025新高考数学核心母题400道(教师版)
- 《民用建筑集中空调自动控制系统技术标准》
- 民警进校园安全教育
- 《电力建设工程施工安全管理导则》(NB∕T 10096-2018)
- 【MOOC】金融风险管理-中央财经大学 中国大学慕课MOOC答案
- 混凝土耐久性评估研究
评论
0/150
提交评论