




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、大学物理机械振动和机械波第二篇第二篇机械振动和机械波机械振动和机械波大学物理机械振动和机械波大学物理机械振动和机械波 一一 掌握描述简谐运动的各个物理量掌握描述简谐运动的各个物理量(特别是相位)的物理意义及各量间的关系(特别是相位)的物理意义及各量间的关系. . 二二 掌握描述简谐运动的旋转矢量法,掌握描述简谐运动的旋转矢量法,并会用于简谐运动规律的讨论和分析并会用于简谐运动规律的讨论和分析. . 三三 掌握简谐运动的基本特征,能建立掌握简谐运动的基本特征,能建立一维简谐运动的微分方程,能根据给定的初一维简谐运动的微分方程,能根据给定的初始条件写出一维简谐运动的运动方程,并理始条件写出一维简谐
2、运动的运动方程,并理解其物理意义解其物理意义. .大学物理机械振动和机械波 四四 理解同方向、同频率简谐运动的合理解同方向、同频率简谐运动的合成规律,了解拍的特点成规律,了解拍的特点. . 五五 了解阻尼振动、受迫振动和共振的发了解阻尼振动、受迫振动和共振的发生条件及规律生条件及规律. .大学物理机械振动和机械波本章重点本章重点相位概念的理解及掌握简谐振动的基本规律。相位概念的理解及掌握简谐振动的基本规律。同方向同频率简谐振动的合成。同方向同频率简谐振动的合成。本章难点本章难点相位概念的理解。相位概念的理解。 大学物理机械振动和机械波 任一物理量在某一定值附近往复变化均称为任一物理量在某一定值
3、附近往复变化均称为振动振动. . 机械振动机械振动 物体围绕一固定位置往复运动物体围绕一固定位置往复运动. . 其运动形式有直线、平面和空间振动其运动形式有直线、平面和空间振动. . 周期和非周期振动周期和非周期振动 例如一切发声体、心脏、海浪起伏、地震以例如一切发声体、心脏、海浪起伏、地震以及晶体中原子的振动等及晶体中原子的振动等. .引引 言言大学物理机械振动和机械波 简谐振动简谐振动 最简单、最基本的振动最简单、最基本的振动. .谐振子谐振子 作简谐振动的物体作简谐振动的物体. .简谐振动简谐振动复杂振动复杂振动合成合成分解分解大学物理机械振动和机械波kl0 xmoAA1 弹簧振子弹簧振
4、子00Fx4-1 简谐振动简谐振动一一 简谐振动的特征方程简谐振动的特征方程平衡位置平衡位置大学物理机械振动和机械波makxF0dd222 xtxmk2令令xa2)sin(ddtAtxv)cos(dd222tAtxa积分常数,根据初始条件确定积分常数,根据初始条件确定)cos(tAxxxFmo大学物理机械振动和机械波2 单摆单摆lmoA)cos(mtlg2令令Fmg转动转动正向正向sin,5时时tmamg sin mldtdmlml220sin lg02 大学物理机械振动和机械波oC*3 复摆复摆(物理摆物理摆)lmglM22ddtImgl 0dd222 tImgl 2令令)cos(mt)5(
5、P( 点为质心)点为质心)C转动正向转动正向动力学判据动力学判据运动学判据运动学判据大学物理机械振动和机械波tx图图tv图图ta图图TAA2A2AxvatttAAoooTT)cos(tAx0取取)2cos(tA)sin(tAv)cos(2tA)cos(2tAa二二 谐振动的速度和加速度谐振动的速度和加速度大学物理机械振动和机械波简谐运动的描述和特征简谐运动的描述和特征xa24 4)加速度与位移成正比而方向相反)加速度与位移成正比而方向相反0dd222 xtx2 2)简谐运动的动力学描述)简谐运动的动力学描述)sin(tAv)cos(tAx3 3)简谐运动的运动学描述)简谐运动的运动学描述mk弹
6、簧振子弹簧振子lg单摆单摆kxF1 1)物体受线性回复力作用)物体受线性回复力作用 平衡位置平衡位置0 xImgl复摆复摆大学物理机械振动和机械波)cos(tAx1 1 振幅振幅maxxA 2 周期、频率周期、频率kmT2弹簧振子周期弹簧振子周期2T 周期周期21T 频率频率T22 圆频率圆频率)(cosTtA周期和频率仅与振动系周期和频率仅与振动系统本身的物理性质有关统本身的物理性质有关注意注意tx图图AAxT2Tto三三 描述简谐振动的物理量描述简谐振动的物理量( (三要素三要素) )大学物理机械振动和机械波1) 存在一一对应的关系存在一一对应的关系;),(vxt3 相位相位 (位相位相,
7、周相周相)ttx曲线曲线AAxT2Tto)sin(tAv)cos(tAx 简谐运动中,简谐运动中, 和和 之间不存在一一对应的之间不存在一一对应的关系关系.xvvvv大学物理机械振动和机械波1) 存在一一对应的关系存在一一对应的关系;),(vxt3 相位相位 (位相位相,周相周相)t物理意义:可据以描述物体在任一时刻的运动状态物理意义:可据以描述物体在任一时刻的运动状态月相月相: 新月新月, 娥眉月娥眉月, 上弦月上弦月, 满月满月, 下弦月下弦月, 残月等残月等娥眉月娥眉月上弦月上弦月下弦月下弦月满月满月)cos(tAx大学物理机械振动和机械波1) 存在一一对应的关系存在一一对应的关系;),
8、(vxt202)相位在)相位在 内变化,质点无相同的运动状态;内变化,质点无相同的运动状态; 3 相位相位 (位相位相,周相周相)t3)初相位)初相位 描述质点初始时刻的运动状态描述质点初始时刻的运动状态. ) 0( t) (2nn相差相差 为整数为整数 质点运动状态全同质点运动状态全同.(周期性)(周期性)20( 取取 或或 )物理意义:可据以描述物体在任一时刻的运动状态物理意义:可据以描述物体在任一时刻的运动状态.)cos(tAx大学物理机械振动和机械波22020vxA00tanxv四四 常数常数 和和 的确定的确定A000vv xxt初始条件初始条件cos0Ax sin0Av 对给定振动
9、系统,周期由系统本身性质对给定振动系统,周期由系统本身性质决定,振幅和初相由初始条件决定决定,振幅和初相由初始条件决定.)sin(tAv)cos(tAx大学物理机械振动和机械波cos0A2 0sin0Av2 0sin取取0, 0, 0vxt已知已知 求求讨论讨论xvo)2 cos(tAxAAxT2Tto大学物理机械振动和机械波例例4-1 一轻弹簧一轻弹簧,下挂质量为下挂质量为10g 的重物时的重物时,伸伸长长4.9cm.用它和质量用它和质量80g小球构成弹簧振子小球构成弹簧振子.将小球由平衡位置向下拉将小球由平衡位置向下拉1.0cm 后后,给向上初给向上初速度速度v=5.0cm/s.求振动周期
10、及振动表达式求振动周期及振动表达式.解解: 取向下为取向下为x轴正向轴正向.15 s振动方程为振动方程为 x=0.0141cos(5t+ /4)(SI)大学物理机械振动和机械波例例4-2 如图所示,一边长为如图所示,一边长为L的立方体木块浮于静的立方体木块浮于静水中,浸入水中部分的高度为水中,浸入水中部分的高度为b。今用手将木块压。今用手将木块压下去,放手让其开始运动。若忽略水对木块的黏性下去,放手让其开始运动。若忽略水对木块的黏性阻力,并且水面开阔,不因木块运动而使水面高度阻力,并且水面开阔,不因木块运动而使水面高度变化,证明木块作谐振动。变化,证明木块作谐振动。bXmg证明:证明:浮F以水
11、面为原点建立坐标以水面为原点建立坐标OXx022xbgdtxd0222xdtxd大学物理机械振动和机械波解决简谐运动方程问题的一般步骤解决简谐运动方程问题的一般步骤:1) 找到振动平衡位置找到振动平衡位置,此时合力为零此时合力为零,选平衡位选平衡位置为原点置为原点,建立坐标系建立坐标系2) 设振子离开原点设振子离开原点x处处,分析受力情况分析受力情况.3) 应用牛顿定律应用牛顿定律.4) 根据初始条件确定根据初始条件确定A和和 .5) 写出振动表达式写出振动表达式.另外一个方法另外一个方法: 能量法能量法大学物理机械振动和机械波)(sin21212222ktAmmEv)(cos2121222p
12、tkAkxE线性回复力是保守力,作简谐运动的系统机械能守恒线性回复力是保守力,作简谐运动的系统机械能守恒 以弹簧振子为例以弹簧振子为例)sin()cos(tAtAxvkxF22pk21AkAEEEmk /2(振幅的动力学意义)(振幅的动力学意义)4-2 谐振动的能量谐振动的能量大学物理机械振动和机械波简简 谐谐 运运 动动 能能 量量 图图txtv221kAE 0tAxcostAsinvv, xtoT4T2T43T能量能量oTttkAE22pcos21tAmE222ksin21大学物理机械振动和机械波能量守恒能量守恒简谐振动方程简谐振动方程推导推导常量222121kxmEv0)2121(dd2
13、2kxmtv0ddddtxkxtmvv0dd22xmktx大学物理机械振动和机械波 例例4-3 质量为质量为 的物体,以振幅的物体,以振幅 作简谐运动,其最大加速度为作简谐运动,其最大加速度为 ,求:,求:kg10. 0m100 . 122sm0 . 4(1)振动的周期;)振动的周期; (2)通过平衡位置的动能;)通过平衡位置的动能;(3)总能量;)总能量;(4)物体在何处其动能和势能相等?)物体在何处其动能和势能相等?解解 (1)s314. 0T(2)(3)max,kEE J100 . 23(4)J100 . 23max,kEcm707. 0 x大学物理机械振动和机械波 解:设棒长为解:设棒
14、长为2R, 质量为质量为m,在,在棒扭动时棒扭动时, 其质心沿其质心沿 上下运动。上下运动。因扭动角度因扭动角度 很小,可近似认为很小,可近似认为细棒在水平面内转动。扭动角度细棒在水平面内转动。扭动角度为为 时时, 细棒在水平面内转动角度细棒在水平面内转动角度为为 ,OORl OO 例例4-4 一匀质细杆一匀质细杆AB的两端的两端, 用长度都为用长度都为l 且不计质且不计质量的细绳悬挂起来量的细绳悬挂起来, 当棒以微小角度绕中心轴当棒以微小角度绕中心轴 扭扭动时,求证其运动周期为:动时,求证其运动周期为: 。glT3/2 O OABlcpmghE 2)(21dtdIEk 0322 lgdtd)
15、cos1( lhc思考思考: :如何利用转动定律求解如何利用转动定律求解? ?大学物理机械振动和机械波 例例4-5 劲度系数为劲度系数为k、原长为、原长为l、质量为、质量为m的均的均匀弹簧,一端固定,另一端系一质量为匀弹簧,一端固定,另一端系一质量为M 的物体,的物体,在光滑水平面内作直线运动。求解其运动。在光滑水平面内作直线运动。求解其运动。lxMXsdsO 解:平衡时解:平衡时O 点为点为坐标原点。物体运动坐标原点。物体运动到到x 处时,弹簧固定端处时,弹簧固定端位移为零,位于位移为零,位于M 一一端位移为端位移为x。当物体。当物体于于x 处时处时,弹簧元弹簧元 ds 的质量的质量 , 位
16、移为位移为 速度为速度为 lmdsdm/ lsx/dtdxls0322 xmMkdtxd大学物理机械振动和机械波xoAcos0Ax 当当 时时0t0 x4-3 谐振动的旋转矢量投影表示法谐振动的旋转矢量投影表示法大学物理机械振动和机械波xoAtt t)cos(tAx时时 以以 为为原点的旋转原点的旋转矢量矢量 在在 轴上的投影轴上的投影点的运动为点的运动为简谐运动简谐运动. .xAo大学物理机械振动和机械波)cos(tAx 以以 为为原点的旋转原点的旋转矢量矢量 在在 轴上的投影轴上的投影点的运动为点的运动为简谐运动简谐运动. .xAo大学物理机械振动和机械波Amv)2 cos(tAv)cos
17、(2tAa2nAa 2 tmvvxy0At)cos(tAxnaa大学物理机械振动和机械波 (旋转矢量旋转一周所需的时间)(旋转矢量旋转一周所需的时间)2T用旋转矢量图画简谐运动的用旋转矢量图画简谐运动的 图图tx大学物理机械振动和机械波AAx2AtoabxAA0讨论讨论 相位差:表示两个相位之差相位差:表示两个相位之差 . . 1 1)对同一简谐运动,相位差可以给出两运动状)对同一简谐运动,相位差可以给出两运动状态间变化所需的时间态间变化所需的时间. .)()(12tt)cos(1tAx)cos(2tAx12tttat3 TTt6123v2Abt大学物理机械振动和机械波0 xto同步同步 2
18、2)对于两个同频率的简谐运动,相位差表示它们)对于两个同频率的简谐运动,相位差表示它们间步调上的差异间步调上的差异. .(解决振动合成问题)(解决振动合成问题))cos(111tAx)cos(222tAx)()(12tt12xto为其它为其它超前超前落后落后txo反相反相大学物理机械振动和机械波3) 关于旋转矢量法的理解关于旋转矢量法的理解:旋转矢量本身并不做简谐运动旋转矢量本身并不做简谐运动,只是用其投影只是用其投影点的运动来表示谐振动点的运动来表示谐振动, 各物理量直观各物理量直观.在旋转矢量法中在旋转矢量法中,相位表现为角度相位表现为角度,处理方便处理方便,但不是角度但不是角度.相位的物
19、理含义在于可据以描述相位的物理含义在于可据以描述物体在任一时刻的运动状态物体在任一时刻的运动状态.大学物理机械振动和机械波 例例4-6 如图所示,一轻弹簧的右端连着一物体,弹如图所示,一轻弹簧的右端连着一物体,弹簧的劲度系数簧的劲度系数 ,物体的质量,物体的质量 . . (1 1)把物体从平衡位置向右拉到)把物体从平衡位置向右拉到 处停处停下后再释放,求简谐运动方程;下后再释放,求简谐运动方程; 1mN72. 0kg20mm05. 0 xm05. 0 x10sm30. 0v (3 3)如果物体在)如果物体在 处时速度不等于零,处时速度不等于零,而是具有向右的初速度而是具有向右的初速度 ,求其运
20、动方程,求其运动方程. .2A (2 2)求物体从初位置运动到第一次经过)求物体从初位置运动到第一次经过 处时的处时的速度;速度;m/ xo0.05大学物理机械振动和机械波 (1 1) 时,物体所处的位置和所受的力;时,物体所处的位置和所受的力; s0 . 1to08. 004. 004. 008. 0m/xvx处,向处,向 轴负方向运动(如图)轴负方向运动(如图). .试求试求 例例4-7 一质量为一质量为 的物体作简谐运动,其振的物体作简谐运动,其振幅为幅为 ,周期为,周期为 ,起始时刻物体在,起始时刻物体在kg01. 0m08. 0s4m04. 0Ox (2 2)由起始位置运动到)由起始
21、位置运动到 处所需要处所需要的最短时间的最短时间. .m04. 0 x大学物理机械振动和机械波 例例4-8 一质点在一质点在X轴上作简谐运动轴上作简谐运动, 选取该质点选取该质点向右运动通过向右运动通过A点时作为计时起点点时作为计时起点,经经2s后质点后质点第一次经过第一次经过B点点, 再经过再经过4s后第二次经过后第二次经过B点点, A和和B处的速率相同处的速率相同,且且AB=12cm, 求振动方程求振动方程. 法二法二: 旋转矢量法旋转矢量法 法一法一: 解析法解析法 大学物理机械振动和机械波11A1xx0一一 两个同方向同频率简谐运动的合成两个同方向同频率简谐运动的合成21xxx2211
22、2211coscossinsintanAAAA)cos(212212221AAAAA)cos(tAx)cos(111tAx)cos(222tAxAx2x2A2两个同方向同频两个同方向同频率简谐运动合成率简谐运动合成后仍为简谐运动后仍为简谐运动4-4 谐振动的合成谐振动的合成大学物理机械振动和机械波xxtoo212k)cos()(21tAAxA21AAA1A2AT1 1)相位差)相位差212k), 2 1 0( ,k)cos(212212221AAAAA 讨论讨论大学物理机械振动和机械波xxtoo21AAA2)cos()(12tAAx)cos(212212221AAAAAT2A21AA2 2)相
23、位差)相位差) 12(12k) , 1 0( ,ktAxcos11)cos(22tAx大学物理机械振动和机械波3 3)一般情况一般情况2121AAAAA21AAA2 2)相位差)相位差1 1)相位差)相位差21AAA212k)10( , k相互加强相互加强相互削弱相互削弱) 12(12k)10( , k大学物理机械振动和机械波三三 两个同方向不同频率简谐运动的合成两个同方向不同频率简谐运动的合成 )cos(1111 tAx)cos(2222 tAx两个同方向的谐振动两个同方向的谐振动, 角频率分别为角频率分别为 和和 ,且且 略大于略大于 , 1212t时刻两分振动的旋转矢量之间的夹角为时刻两
24、分振动的旋转矢量之间的夹角为:)()(1212 t与时间有关与时间有关大学物理机械振动和机械波 频率较大而频率之差很小的两个同方向简谐运动的频率较大而频率之差很小的两个同方向简谐运动的合成,其合振动的振幅时而加强时而减弱的现象叫拍合成,其合振动的振幅时而加强时而减弱的现象叫拍. .大学物理机械振动和机械波单位时间内合振动振幅大小变化的次数单位时间内合振动振幅大小变化的次数,称为称为拍频拍频121221 T拍频等于两个分振动的频率之差拍频等于两个分振动的频率之差大学物理机械振动和机械波角频率角频率振幅振幅maCkxv0dddd22kxtxCtxm0dd2dd2022xtxtx一一 阻尼振动阻尼振
25、动)cos(tAext22022022TvCFr阻尼力阻尼力mk0mC 2固有角频率固有角频率阻尼系数阻尼系数阻力系数阻力系数4-5 阻尼振动阻尼振动 受迫振动受迫振动 共振共振大学物理机械振动和机械波otx三种阻尼的比较三种阻尼的比较阻尼振动位移阻尼振动位移-时间曲线时间曲线AAtOx)0(220)cos(tAext0dddd22kxtxCtxm220 b b)过阻尼)过阻尼220 a a)欠阻尼)欠阻尼220 c c)临界阻尼)临界阻尼tAeTabctAetcos大学物理机械振动和机械波驱动力驱动力tFkxtxCtxmp22cosdddd二二 受迫振动受迫振动( (周期性外力持续作用周期性外力持续作用) )mk0mC2mFf tfxt
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 备料订单合同(标准版)
- 劳动风险合同(标准版)
- 历史人物影响解读
- 烟草青海公司真题2025
- 闫力齐监理课件
- 2024年人体解剖学题库含答案
- 难点解析-人教版八年级物理上册第5章透镜及其应用-透镜章节训练试题(含答案解析版)
- 难点解析人教版八年级物理上册第5章透镜及其应用章节练习试题(含详解)
- 考点解析-人教版八年级物理上册第5章透镜及其应用-生活中的透镜综合测评试题
- 难点详解人教版八年级物理上册第4章光现象-光的折射同步练习试卷(解析版)
- 2023南方区域AGC发电单元调频指标计算规范2019版
- 六年级古诗词字帖
- 更换板式换热器安全操作规程
- 机械原理 潘存云课件 第8章 其它常用机构
- 如何提高静脉穿刺技术
- GB/T 17747.2-2011天然气压缩因子的计算第2部分:用摩尔组成进行计算
- 2023年研究生自然辩证法概论期末考试题库
- 伦理学与生活第二三四五章(规范伦理学)-1P课件
- DB61-T 1061-2017挥发性有机物排放控制标准
- 小学数学 冀教课标版 四年级上册 典型问题 典型问题(例题5)课件
- 桂林市高考调研考试质量分析报
评论
0/150
提交评论