




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、会计学1掌握几种极限的定义中掌握几种极限的定义中重点:掌握几种极限的掌握几种极限的定义中,定义中,第二、三句话的区别与意义第二、三句话的区别与意义第1页/共42页.sin时的变化趋势时的变化趋势当当观察函数观察函数 xxx播放播放第2页/共42页问问题题: :函函数数)(xfy 在在 x的的过过程程中中, 对对应应函函数数值值)(xf无无限限趋趋近近于于确确定定值值 A.;)()(任意小任意小表示表示AxfAxf .的过程的过程表示表示 xXx. 0sin)(,无限接近于无限接近于无限增大时无限增大时当当xxxfx 通过上面演示实验的观察通过上面演示实验的观察:问题问题: 如何用数学语言刻划函
2、数如何用数学语言刻划函数“无限接近无限接近”.第3页/共42页定义定义 1 1 如果对于任意给定的正数如果对于任意给定的正数 ( (不论它多么小不论它多么小),),总存在着正数总存在着正数X, ,使得对于适合不等式使得对于适合不等式Xx 的一切的一切x, ,所对应的函数值所对应的函数值)(xf都满足不等式都满足不等式 Axf)(, ,那末常数那末常数A就叫函数就叫函数)(xf当当 x时的极限时的极限, ,记作记作)()()(lim xAxfAxfx当当或或定义定义)( X .)(, 0, 0 AxfXxX有有当当 Axfx)(lim1、定义:、定义:第4页/共42页:.10情形情形x.)(,
3、0, 0 AxfXxX有有当当:.20情情形形 xAxfx )(lim.)(, 0, 0 AxfXxX有有当当Axfx )(lim2、另两种情形、另两种情形: Axfx)(lim:定定理理.)(lim)(limAxfAxfxx 且且第5页/共42页xxysin 3、几何解释、几何解释: X X.2,)(,的带形区域内的带形区域内宽为宽为为中心线为中心线直线直线图形完全落在以图形完全落在以函数函数时时或或当当 AyxfyXxXxA第6页/共42页xxysin 例例1. 0sinlim xxx证明证明证证xxxxsin0sin x1 X1 , , 0 X取取Xx 当当. 0sinlim xxx故故
4、.)(,)(lim:的图形的水平渐近线的图形的水平渐近线是函数是函数则直线则直线如果如果定义定义xfycycxfx 1 11 第7页/共42页第8页/共42页问问题题: :函函数数)(xfy 在在0 xx 的的过过程程中中,对对应应函函数数值值)(xf无无限限趋趋近近于于确确定定值值 A.;)()(任意小任意小表示表示AxfAxf .000的过程的过程表示表示xxxx x0 x 0 x 0 x ,0邻域邻域的去心的去心点点 x.0程度程度接近接近体现体现xx 第9页/共42页定义定义 2 2 如果对于任意给定的正数如果对于任意给定的正数 ( (不论它多不论它多么小么小),),总存在正数总存在正
5、数 , ,使得对于适合不等式使得对于适合不等式 00 xx的一切的一切x, ,对应的函数值对应的函数值)(xf都都满足不等式满足不等式 Axf)(, ,那末常数那末常数A就叫函数就叫函数)(xf当当0 xx 时的极限时的极限, ,记作记作)()()(lim00 xxAxfAxfxx 当当或或定义定义 .)(,0, 0, 00 Axfxx恒有恒有时时使当使当1、定义:、定义:第10页/共42页2、几何解释、几何解释:)(xfy AAA0 x0 x0 xxyo.2,)(,0的带形区域内的带形区域内宽为宽为为中心线为中心线线线图形完全落在以直图形完全落在以直函数函数域时域时邻邻的去心的去心在在当当
6、Ayxfyxx注意注意:;)(. 10是是否否有有定定义义无无关关在在点点函函数数极极限限与与xxf. 2有有关关与与任任意意给给定定的的正正数数 .,越越小小越越好好后后找找到到一一个个显显然然 第11页/共42页例例2).( ,lim0为常数为常数证明证明CCCxx 证证Axf )(CC ,成立成立 , 0 任任给给0 .lim0CCxx , 0 任任取取,00时时当当 xx例例3.lim00 xxxx 证明证明证证,)(0 xxAxf , 0 任任给给, 取取,00时时当当 xx0)(xxAxf ,成立成立 .lim00 xxxx 第12页/共42页例例4. 211lim21 xxx证明
7、证明证证211)(2 xxAxf, 0 任任给给, 只只要要取取,00时时当当 xx函数在点函数在点x=1处没有定义处没有定义.1 x,)( Axf要要使使,2112 xx就有就有. 211lim21 xxx第13页/共42页例例5.lim00 xxxx 证证0)(xxAxf , 0 任任给给,min00 xx取取,00时时当当 xx00 xxxx ,)( Axf要要使使,0 xx就有就有,00 xxx .00且且不不取取负负值值只只要要 xxx.lim,0:000 xxxxx 时时当当证明证明第14页/共42页3.单侧极限单侧极限:例如例如,. 1)(lim0, 10,1)(02 xfxxx
8、xxfx证明证明设设两种情况分别讨论两种情况分别讨论和和分分00 xx,0 xx从左侧无限趋近从左侧无限趋近; 00 xx记作记作,0 xx从右侧无限趋近从右侧无限趋近; 00 xx记作记作yox1xy 112 xy第15页/共42页左极限左极限.)(, 0, 000 Axfxxx恒有恒有时时使当使当右极限右极限.)(, 0, 000 Axfxxx恒有恒有时时使当使当000:000 xxxxxxxxx注意注意.)0()(lim0)(000AxfAxfxxxx 或或记作记作.)0()(lim0)(000AxfAxfxxxx 或或记作记作第16页/共42页.)0()0()(lim:000Axfxf
9、Axfxx 定理定理.lim0不存在不存在验证验证xxxyx11 oxxxxxx 00limlim左右极限存在但不相等左右极限存在但不相等,.)(lim0不存在不存在xfx例例6证证1)1(lim0 xxxxxxx00limlim 11lim0 x第17页/共42页1.有界性有界性定理定理 若在某个过程下若在某个过程下, ,)(xf有极限有极限, ,则存在则存在过程的一个时刻过程的一个时刻, ,在此时刻以后在此时刻以后)(xf有界有界. .2.唯一性唯一性定理定理 若若)(limxf存在存在,则极限唯一则极限唯一.第18页/共42页推论推论).()(),(, 0,)(lim,)(lim0000
10、 xgxfxUxBABxgAxfxxxx 有有则则且且设设3.不等式性质不等式性质定理定理( (保序性保序性) ).),()(),(, 0.)(lim,)(lim0000BAxgxfxUxBxgAxfxxxx 则则有有若若设设第19页/共42页).0)(0)(,),(, 0),0(0,)(lim000 xfxfxUxAAAxfxx或或时时当当则则或或且且若若定理定理( (保号性保号性) ).0(0),0)(0)(,),(, 0,)(lim000 AAxfxfxUxAxfxx或或则则或或时时当当且且若若推论推论第20页/共42页4.子列收敛性子列收敛性(函数极限与数列极限的关系函数极限与数列极限
11、的关系) .)(),(,),(),(,)(.),(),(21000时的子列时的子列当当为函数为函数即即则称数列则称数列时时使得使得有数列有数列中中或或可以是可以是设在过程设在过程axxfxfxfxfxfaxnaxxxxaaxnnnn 定义定义.)(lim,)()(,)(limAxfaxxfxfAxfnnnax 则有则有时的一个子列时的一个子列当当是是数列数列若若定理定理第21页/共42页证证.)(,0, 0, 00 Axfxx恒有恒有时时使当使当Axfxx )(lim0.0, 0, 00 xxNnNn恒有恒有时时使当使当对上述对上述,)( Axfn从而有从而有.)(limAxfnn 故故,li
12、m00 xxxxnnn 且且又又第22页/共42页例如例如,xxysin 1sinlim0 xxx, 11sinlim nnn, 11sinlim nnn11sin1lim22 nnnnn函数极限与数列极限的关系函数极限与数列极限的关系函数极限存在的充要条件是它的任何子列的极函数极限存在的充要条件是它的任何子列的极限都存在限都存在, ,且相等且相等. .第23页/共42页xy1sin 例例7.1sinlim0不存在不存在证明证明xx证证 ,1 nxn取取, 0lim nnx; 0 nx且且 ,2141 nxn取取, 0lim nnx; 0 nx且且第24页/共42页 nxnnnsinlim1s
13、inlim 而而, 1 214sinlim1sinlim nxnnn而而1lim n二者不相等二者不相等,.1sinlim0不存在不存在故故xx, 0 第25页/共42页函数极限的统一定义函数极限的统一定义;)(limAnfn ;)(limAxfx ;)(limAxfx ;)(limAxfx ;)(lim0Axfxx ;)(lim0Axfxx .)(lim0Axfxx .)(, 0)(lim AxfAxf恒有恒有从此时刻以后从此时刻以后时刻时刻(见下表见下表)第26页/共42页过过 程程时时 刻刻从此时刻以后从此时刻以后 n x x xNNn Nx Nx Nx )(xf Axf)(0 xx 0
14、0 xx 0 xx 0 xx 00 xx00 xx过过 程程时时 刻刻从此时刻以后从此时刻以后 )(xf Axf)(第27页/共42页思考思考题题试试问问函函数数 0,50,100,1sin)(2xxxxxxxf在在0 x处处的的左左、右右极极限限是是否否存存在在?当当0 x时时,)(xf的的极极限限是是否否存存在在?第28页/共42页思考题解答思考题解答 )(lim0 xfx, 5)5(lim20 xx左极限存在左极限存在, )(lim0 xfx, 01sinlim0 xxx右极限存在右极限存在, )(lim0 xfx)(lim0 xfx )(lim0 xfx不存在不存在.第29页/共42页
15、.01. 01_131222 yzxzxxyx,必有,必有时,只要时,只要取取,问当,问当时,时,、当、当.001. 0420_4212 yxxyx,必有,必有只要只要时,时,取取,问当,问当时,时,、当、当 证明:证明:二、用函数极限的定义二、用函数极限的定义一、填空题一、填空题:0sinlim221241lim1221 xxxxxx、练练 习习 题题第30页/共42页.)(:0极限各自存在并且相等极限各自存在并且相等必要条件是左极限、右必要条件是左极限、右时极限存在的充分时极限存在的充分当当函数函数三、试证三、试证xxxf?0)(存存在在时时的的极极限限是是否否在在四四、讨讨论论:函函数数
16、 xxxx 第31页/共42页一一、1 1、0 0. .0 00 00 02 2; 2 2、397. .四四、不不存存在在. .练习题答练习题答案案第32页/共42页.sin时的变化趋势时的变化趋势当当观察函数观察函数 xxx一、自变量趋向无穷大时函数的极限第33页/共42页.sin时的变化趋势时的变化趋势当当观察函数观察函数 xxx一、自变量趋向无穷大时函数的极限第34页/共42页.sin时的变化趋势时的变化趋势当当观察函数观察函数 xxx一、自变量趋向无穷大时函数的极限第35页/共42页.sin时的变化趋势时的变化趋势当当观察函数观察函数 xxx一、自变量趋向无穷大时函数的极限第36页/共42页.sin时的变化趋势时的变化趋势当当观察函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 质性研究论文撰写课件
- 2025版环保设备定期检查与维修合同样本
- 2025年度医院病房地毯采购与专业铺设服务合同
- 2025版起重机租赁合同(含设备检测)范本
- 2025版让与担保合同样本:仓储物流服务
- 2025版企业可持续发展培训项目承包合同范本
- 2025年度水利工程土方回填及水土保持工程合同
- 2025地磅交易与远程故障诊断服务合同
- 诸城牙科小知识培训班课件
- 语言文字知识培训讲稿课件
- 《安装工程识图》中职技工全套教学课件
- 中考代词-(人称代词、物主代词、指示代词、反身代词、不定代词教学)课件26张
- 《人工智能基础》课件-AI的前世今生:她从哪里来
- 国企集团公司各岗位廉洁风险点防控表格(廉政)范本
- 中医师承跟师笔记50篇
- 血液透析高钾血症的护理查房
- 统编版四年级上册第四单元快乐读书吧 《中国古代神话故事》 课件
- GRE强化填空36套精练与精析
- 物流管理就业能力展示
- 宿管老师培训课件
- 四年级英语 4AM3U2 Around my home同课异构
评论
0/150
提交评论