




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、监督分类中常用的具体分类方法包括:最小距离分类法( minimum distance classifie)r :最小距离分类法是用特征空间中的距离作为像元分类依据 的。最小距离分类包括最小距离判别法和最近邻域分类法。 最小 距离判别法要求对遥感图像中每一个类别选一个具有代表意义 的统计特征量(均值),首先计算待分象元与已知类别之间的距 离,然后将其归属于距离最小的一类。 最近邻域分类法是上述方 法在多波段遥感图像分类的推广。 在多波段遥感图像分类中, 每 一类别具有多个统计特征量。 最近邻域分类法首先计算待分象元 到每一类中每一个统计特征量间的距离, 这样, 该象元到每一类 都有几个距离值,
2、取其中最小的一个距离作为该象元到该类别的 距离,最后比较该待分象元到所有类别间的距离, 将其归属于距 离最小的一类。 最小距离分类法原理简单,分类精度不高,但 计算速度快,它可以在快速浏览分类概况中使用。 多级切割分类法( multi-level slice classifie)r :是根据设定在各轴上值域分割多维特征空间的分类方法。通 过分割得到的多维长方体对应各分类类别。 经过反复对定义的这 些长方体的值域进行内外判断而完成各象元的分类。 这种方法要 求通过选取训练区详细了解分类类别(总体)的特征,并以较高 的精度设定每个分类类别的光谱特征上限值和下限值, 以便构成 特征子空间。 多级切割
3、分类法要求训练区样本选择必须覆盖所有 的类型, 在分类过程中, 需要利用待分类像元光谱特征值与各个 类别特征子空间在每一维上的值域进行内外判断, 检查其落入哪 个类别特征子空间中,直到完成各像元的分类。多级分割法分类便于直观理解如何分割特征空间,以及待分 类像元如何与分类类别相对应。由于分类中不需要复杂的计算, 与其它监督分类方法比较, 具有速度快的特点。 但多级分割法要 求分割面总是与各特征轴正交, 如果各类别在特征空间中呈现倾 斜分布,就会产生分类误差。因此运用多级分割法分类前,需要 先进行主成分分析, 或采用其它方法对各轴进行相互独立的正交 变换,然后进行多级分割。最大似然分类法 (ma
4、ximum likelihood classifier):最大似然分类法是经常使用的监督分类方法之一,它是通过 求出每个像元对于各类别归属概率(似然度)(likelihood),把 该像元分到归属概率(似然度)最大的类别中去的方法。最大似 然法假定训练区地物的光谱特征和自然界大部分随机现象一样, 近似服从正态分布, 利用训练区可求出均值、 方差以及协方差等 特征参数, 从而可求出总体的先验概率密度函数。 当总体分布不 符合正态分布时, 其分类可靠性将下降, 这种情况下不宜采用最 大似然分类法。最大似然分类法在多类别分类时,常采用统计学方法建立起 一个判别函数集, 然后根据这个判别函数集计算各待
5、分象元的归属概率(似然度)。这里,归属概率(似然度)是指:对于待分 象元X,它从属于分类类别k的(后验)概率。设从类别k中观测到X的条件概率为P(x|k),则归属概率Lk 可表示为如下形式的判别函数:Lk = P(t|x) =x P(桐 忆P x(4)式中P(k)为类别k的先验概率,它可以通过训练区来决定。此 外,由于上式中分母和类别无关,在类别间比较的时候可以忽略。 最大似然分类必须知道总体的概率密度函数P(x|k)。由于假定训练区地物的光谱特征和自然界大部分随机现象一样,近似服从正态分布(对一些非正态分布可以通过数学方法化为正态问题来处 理),因此通常可以假设总体的概率密率函数为多维正态分
6、布, 通过训练区,按最大似然度测定其平均值及方差、协方差。此时,像元X归为类别k的归属概率Lk表示如下(这里省略了和类别 无关的数据项)。(6-9)式中:n:特征空间的维数;P(k):类别k的先验概率;Lk(x):像元X归并到类别k的归属概率;X :像元向量;成类别k的平均向量(n维列向量);det:矩阵A的行列式刀k :类别k的方差、协方差矩(nxn矩阵).这里注意:各个类别的训练数据至少要为特征维数的2到3倍以上这样才能测定具有较高精度的均值及方差、协方差;如果2个以上的波段相关性强,那么方差协方差矩阵的逆矩阵可能不存在, 或非常不稳定,在训练样本几乎都取相同值的均质性数据组时这 种情况也
7、会出现。此时,最好采用主成分变换,把维数压缩成仅 剩下相互独立的波段,然后再求方差协方差矩阵;当总体分布不 符合正态分布时,不适于采用正态分布的假设为基础的最大似然 分类法。当各类别的方差、协方差矩阵相等时,归属概率变成线性判 别函数,如果类别的先验概率也相同, 此时是根据欧氏距离建立 的的线性判别函数,特别当协方差矩阵取为单位矩阵时,最大似然判别函数退化为采用欧氏距离建立的最小距离判别法。监督分类流程图(Erdas环境)在专业遥感图像处理软件 Erdas环境下,监督分类的流程图可以 表示如下:原始遥感彫椽1训经区1 (aoi)训练区2 (aoi)训练区-&D训练区n Caoi)持征文件1(我
8、Q特征文件2 Cig)持征文件持征交件总特征袁件(sig)选择分真器分类结果不符合裳求图2-1监督分类流程图监督分类注意事项(1) 分类应从下往上,即每一地类应先细分为若干小类,然后 再依需要自下而上合并成大类。(2) 每一类的训练区文件 aoi与特征文件sig应该一一对应,即 每一类对应的训练区和特征文件都应该保存为一个单独的文件, 以方便在调整训练区的时候进行修改。(3) 精度检验后若精度不符合要求,需要重新调整训练区,再 次分类,直到精度满足要求为止。监督分类过程示例1图2-2为某地TM遥感影像,432波段假彩色合成。图2-2 TM影像(432波段合成)2.确定分类类别通过色调、纹理等图
9、像特征,确定该区域分类类别为水体,植被 和滩涂。各类分类特征如表 2-1所示。类别判别特征邑调呈暗蓝鱼,纹理变化较小植祓色调呈现红色滩徐色调为白色.分布在水域附近表2-1分类特征3.为每一类选择训练区及特征文件(1)AOI操作工具简介在Viewer窗口中选择“ AOI“Tools ”调出 AOI (Area Of Interest,感兴趣区)浮动工具栏(如图2-3所示)。Xr口述評-.I- L.1N口电O+a/Clow?AO1图2-3 AOI浮动工具栏其中较为常用的工具按钮为:按 钮功能简穴lx点选按钮,按下Shift可以选择多个AOI区域。Fa+1LJ框选按孙可以选择多个AOIE域.矩形AO
10、I工具,用以绘制犯形的AOI区域。o箭圆丸01工島 用以绘制荊圆型AOI区域。任意AOIZ具,绘制任SW的AOI区域。AOI剪切删除工具,用于剪切/删除选中的AOI区域。(2) 特征文件操作工具简介特征文件从AOI区域中获得。使用“ Erdas” f“ Classifier” fSig nature Editor”,调出特征文件编辑器,如图2-4所示Signature Editor (No File)冋皀 Edit View Evaluate Feature Classify Help由E j已S A (A A图2-4特征文件编辑器其中较为常用的工具为:曰打开一个特征文件。 新建一个特征文件/
11、打开新的特征文 件编辑器。口3添加选中的AOI的特征到特征文件中。B使用选中的AOI 特征替换当前特征。已合并选中的特征文件中的特征到一个特征。一般建立特征 文件的步骤是,在 Viewer窗口中使用 AOI工具勾画感兴 趣区,使用U3把该 AOI区域中的特征 添加到特征文件 中。也可以选中多 个AOI批量添加到 特征文件中。(2)为各类别建立 训练区文件和特征 文件。a* Viewer #1 :图2-5图2-6把遥感影像放 大到像元级,选择 矩形AOI选择工 具,根据建立的判 读标识,在遥感影 像上选择AOI区 域,然后使用依次 添加特征到特征文 件中。(注:作为 示例,本例选择3 个AOI区
12、域,且没 有细分小类。)选 择完成的AOI区域 和特征文件如图2-5和图2-6所示。分别保存为“水体.ao”和“水体.sig”。在 Viewer 窗口 中使用口去除已 经保存完毕的AOI 图层,重新选择其 他类别的训练区, 并建立新的特征文 件。分别保存为“植被.ao”和“植被.sig”; “滩涂.ao”和“滩涂.sig”。(3)合并特征文件在各个类别的特征文件建立完毕后,需要合并成为一个总体特征 文件。新建一个特征文件编辑器,选择打打开保存的“水体dg”文件。注意选择“ Append” (添加)把特征文件添加进来,而非“ Replace (替换)。如图2-7所示。图2-7添加特征文件把水体特
13、征文件添加进来之后,全部选中所有的特征,如图2-8所示。10 Signature Editor (水体Hg)File Edit View Evaluate Feature Classfy Help 宜口心务S iA Ad图2-8选中所有特征使用 工具,把选中的水体的所有特征合并为一个总体的水体特征,右单击“ Class#列表,选择“ Delete Selection删除原有特征如图2-9所示。图2-9删除原有特征重命名总体水体特征的“ Sig nature Name为“水体”。如图2-10 所示。EM Sign-ature Editor (水体崗皿File Edit View Evaluate
14、 Feature Classify Help踪口 7 I 斗 S IA z?精选文档图2-10总体水体特征如此添加其他两类进入,并合并成各自的总体特征,分别命名为“植被”、“滩涂”。并更改Value值为1, 2, 3,并另存为(SaveAs)“结果特征文件.sig”如图2-11所示。|血Signature Editor f结果特征立件File Edit View Evaluate eture ClassifyHet曲口 7哉Sli 9GreenElueVJue Order160口 nature Nanne ColorOL20513340.3450431.0001 0000677D.4770.5
15、55Red24图2-11结果特征文件(4) 分类选择“ Erdas” f“ Classifier f“ Supervised Classification ,在分类设置对话框中如图2-12设置。血.Supervised 匸 lassiFkalion2S1subseLihigClassified File: .img|分类结臬.i他Input Fluster Film p.img)Distance FiteAthibute Options.Input SiiQnare Fili Ksig 结果特征文件.如Fikname: I jmalFuzay Classilica hent!est Clare
16、s f-e- Pi me;D盟bion Rule;:N(?n-p-3rametric Rule;tJoneverlap FjulE:parametric Fiu!eUrcJasNed Ffule:Faiameti ic RuleParametric Ruh:M 羽 innurri ikelihoxlKClassify zeiosUse ProbabilitiesElzlBatchADI |Cancel图2-12监督分类设置在该对话框中,使用 输入待分类的图像“ subset.img、分类特 征文件“结果特征文件.sig”并指定分类结果的保存路径及名 称,如“分类结果.img”。分类方法选择“
17、Maximum Likelihood ”(最大似然),其余可以默认。点击“OK”,系统将对原始影像依据指定的特征文件进行分类。 运算完毕界面如图2-13示。图2-13运算完成(5) 分类结果分类的结果如图2-14所示噩File UtAty View AOI RasterHelpEl H 3;图2-14分类结果为了更好的表达分类结果,可以使用Viewer窗口中的“ Rasterf“ Attributes”,更改“水体”和“植被”的显示颜色为蓝色(RGB为0 0 1)和绿色(RGB为0 1 0),如图2-15示。|业 Raster Attribute Editor -分类结果img(;L4yr.i
18、) IFile Edit HelpD H 芍匚电IO)Layer Number卩日图2-15调整颜色血 Viewer #2 :券调整颜色后的分类结果如图2-16所示.二 I 口 I 丸 IEjle Utiity yjew A GJ fasterHelp41425.00, 44B2913.00 (UTM ; Chrkf 抵精度检验 同时打开原始影像和分类结果图,在任一幅图中单击右键,在弹出的菜单中选择“ Geo. Link/Unlink ”,然后在另一幅图中单 击左键,关联两幅影像。 使用“ Erdas”f“ Classifie” Accuracy Assessment调出精度检验设置窗口图2-
19、17精度检验窗口 使用该窗口中“ File”f“Open”,打开原始影像“Subset.img,调入内存。 使用“ View”“ Select Viewer,选择已经打开的分类图,用以显示将要读取的点位信息。 读入GPS测量的点。格式为标准的txt文本。文件格式化为3列,第一列存储x坐标,第二列存储y坐标,第 三列存储类别代码(即分类时指定的 Value值)。如本例中存储 的GPS点文件如表2-3所示表2-3 GPS点位491355.864486746.252491070.454487008.523490754.194484941.222486997.564485905.443486797.0
20、04486707.683492096.394486615.111489118.864486815.963486434.454483151.611486920.424483028.193487375.534482665.641488069.784482449.652491070.454482657.931492266.094484439.821489604.834483167.041486881.854487216.791487984.934487085.661490769.614487116.511489905.674483483.303489080.294483606.733487074.7
21、04483120.752文件中存储的坐标投影应与影像投影完全一致,如本例中影像投 影为 UTM/Clark1866 N50使用“ Edit ”f“ Import User-defined Points”,读入 GPS 点位文件。选项如图2-18所示。图2-18导入选项读取的结果如图2-19所示P*i卅 ttNameXYClassR efareoceA.1|ID 41491355.060446674625022ID轮491070.4504487008.520331014343075419044G4341.22024486997.5601405905.44035IDtt5486797.0004466707.66036IDttB492096.3904486615.11017IDI17489118.SB04466S15.9603gID惬4S6434.450448311.610T9lDtt94869204204463028.1903101DB10487375.53044S26S5.640111iDttn4S9059.78044E2449.&50212IDW2491070.4504482G57.930113lDtt13492266.0904484439.320111IDti14489604.83044631 S7.04D115IDB1549Saai.85O448721 G.7901154B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中医在线考试试题及答案
- 消防安全演练培训档案课件
- 酒店餐饮资料培训
- 2025至2030液压车行业产业运行态势及投资规划深度研究报告
- 消防安全检查培训通知课件
- 英语课件对教学的帮助
- 教学课件算课吗
- 尿毒症高血压护理查房
- 护理不良事件处理流程
- 石油化学品罐车运输安全责任及保险合同
- 医院转诊合同标准文本
- 新课标解读丨《义务教育道德与法治课程标准(2022年版)》解读课件
- 2025年建筑施工安全管理人员考试题库试题
- 老年人误吸的预防
- 《天津天狮奖金制度》课件
- DB33T 2231-2019 渔港防台风等级评估规程
- 护理礼仪(第3版) 课件 第四章 护士仪态礼仪
- 【课件】平衡功能的训练
- 认识中国特色社会主义文化
- 供电所所长讲安全课
- 餐饮外卖智能调度与配送优化方案
评论
0/150
提交评论