




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 27.1图形的相似(一) 学习目的: (1) 从生活中形状相同的图形的实例中认识图形的相似,理解相似图形概念(2) 了解成比例线段的概念,会确定线段的比学习重点、难点1 重点:相似图形的概念与成比例线段的概念2 难点:成比例线段概念一. 观察图片,体会相似图形1 、同学们,请观察下列几幅图片,你能发现些什么?你能对观察到的图片特点进行归纳吗? (课本图27.1-1)( 课本图27.1-2)2 、小组讨论、交流得到相似图形的概念 什么是相似图形? 3 、思考:如图27.1-3是人们从平面镜及哈哈镜里看到的不同镜像,它们相似吗?观察思考,小组讨论回答:二、成比例线段概念1问题:如果把老师手中的教
2、鞭与铅笔,分别看成是两条线段AB和CD,那么这两条线段的比是多少?归纳:两条线段的比,就是两条线段长度的比2、成比例线段:对于四条线段a,b,c,d,如果其中两条线段的比与另两条线段的比相等,如(即ad=bc),我们就说这四条线段是成比例线段,简称比例线段【注意】 (1)两条线段的比与所采用的长度单位没有关系,在计算时要注意统一单位;(2)线段的比是一个没有单位的正数;(3)四条线段a,b,c,d成比例,记作或a:b=c:d;(4)若四条线段满足,则有ad=bc三、例题讲解例1(补充:选择题)如图,下面右边的四个图形中,与左边的图形相似的是( ) 例2(补充)一张桌面的长a=1.25m,宽b=
3、0.75m,那么长与宽的比是多少?(1)如果a=125cm,b=75cm,那么长与宽的比是多少?(2)如果a=1250mm,b=750mm,那么长与宽的比是多少?小结:上面分别采用m、cm、mm三种不同的长度单位,求得的的值是_的,所以说,两条线段的比与所采用的长度单位_,但求比时两条线段的长度单位必须_例3(补充)已知:一张地图的比例尺是1:32000000,量得北京到上海的图上距离大约为3.5cm,求北京到上海的实际距离大约是多少km?分析:根据比例尺=,可求出北京到上海的实际距离二. 巩固练习1. 课本P35.练习 1. 22、下列说法正确的是( )A小明上幼儿园时的照片和初中毕业时的照
4、片相似.B商店新买来的一副三角板是相似的. C所有的课本都是相似的.D国旗的五角星都是相似的.3、填空题形状 的图形叫相似形;两个图形相似,其中一个图形可以看作由另一个图形的 或 而得到的。4在比例尺是1:8000000的“中国政区”地图上,量得福州与上海之间的距离时7.5cm,那么福州与上海之间的实际距离是多少?5AB两地的实际距离为2500m,在一张平面图上的距离是5cm,那么这张平面地图的比例尺是多少? 27.1 图形的相似(二)一、学习目标1知道相似多边形的主要特征,即:相似多边形的对应角相等,对应边的比相等2会根据相似多边形的特征识别两个多边形是否相似,并会运用其性质进行相关的计算二
5、、学习重点、难点1重点:相似多边形的主要特征与识别2难点:运用相似多边形的特征进行相关的计算三、探索新知1、观察图片,体会相似图形性质(教材P36页)(1) 图27.1-4(1)中的A1B1C1是由正ABC放大后得到的,观察这两个图形,它们的对应角有什么关系?对应边又有什么关系呢?图27.1-4(2)对于图27.1-4(2)中两个相似的正六边形,是否也能得到类似的结论?(3)什么叫成比例线段?(阅读课本回答)2 、如图的左边格点图中有一个四边形,请在右边的格点图中画出一个与该四边形相似的图形问题:对于图中两个相似的四边形,它们的对应角,对应边的比是否相等3【结论】:(1)相似多边形的特征:相似
6、多边形的对应角_,对应边的比_反之,如果两个多边形的对应角_,对应边的比_,那么这两个多边形_几何语言:在ABC和A1B1C1中若则ABC和A1B1C1相似 (2)相似比:相似多边形_的比称为相似比问题:相似比为1时,相似的两个图形有什么关系? 结论:相似比为1时,相似的两个图形_,因此_形是一种特殊的相似形四、例题讲解例1(补充)(选择题)下列说法正确的是( )A所有的平行四边形都相似 B所有的矩形都相似C所有的菱形都相似 D所有的正方形都相似例2、例(教材P37页)如图27.1-6,四边形ABCD和EFGH相似,求角的大小和EH的长度例3(补充)已知四边形ABCD与四边形A1B1C1D1相
7、似,且A1B1:B1C1:C1D1:D1A1=7:8:11:14,若四边形ABCD的周长为40,求四边形ABCD的各边的长五、课堂练习1在比例尺为110 000 000的地图上,量得甲、乙两地的距离是30 cm,求两地的实际距离2如图所示的两个直角三角形相似吗?为什么?3如图所示的两个五边形相似,求未知边、的长度六、当堂检测1ABC与DEF相似,且相似比是,则DEF 与ABC与的相似比是( )A B C D2下列所给的条件中,能确定相似的有( )(1)两个半径不相等的圆;(2)所有的正方形;(3)所有的等腰三角形;(4)所有的等边三角形;(5)所有的等腰梯形;(6)所有的正六边形A3个 B4个
8、 C5个 D6个3已知四边形ABCD和四边形A1B1C1D1相似,四边形ABCD的最长边和最短边的长分别是10cm和4cm,如果四边形A1B1C1D1的最短边的长是6cm,那么四边形A1B1C1D1中最长的边长是多少? 4如图,ABEFCD,CD=4,AB=9,若梯形CDEF与梯形EFAB相似,求EF的长5.如图,一个矩形ABCD的长AD= a cm,宽AB= b cm,E、F分别是AD、BC的中点,连接E、F,所得新矩形ABFE与原矩形ABCD相似,求a:b的值 27.2.1相似三角形的判定(一)学习目的:(3) 会用符号“”表示相似三角形如ABC ;(4) 知道当ABC与的相似比为k时,与
9、ABC的相似比为1/k(5) 理解掌握平行线分线段成比例定理学习重点、难点重点: 理解掌握平行线分线段成比例定理及应用难点: 掌握平行线分线段成比例定理应用一、知识链接1、相似多边形的主要特征是什么?2、相似三角形有什么性质?二 合作探究1)在相似多边形中,最简单的就是相似三角形在ABC与ABC中,如果A=A, B=B, C=C, 且 我们就说 ,记作 ,k就是它们的 反之如果ABCABC,则有A=_, B=_, C=_, 且 2)问题:如果k=1,这两个三角形有怎样的关系?明确 (1)在相似多边形中,最简单的就是相似三角形。(2)用符号“”表示相似三角形如ABC ;(3)当ABC与的相似比为
10、k时,与ABC的相似比为 3) 活动1 (教材P40页 探究1)归纳总结:平行线分线段成比例定理 三条_截两条直线,所得的_线段的比_。例1 如图、若AB=3cm,BC=5cm,EK=4cm,写出= =_、 =_。 A E求FK的长? B K F C4) 活动2平行线分线段成比例定理推论思考:1、如果把图27.2-1中l1 , l2两条直线相交,交点A刚落到l3上,如图27.2-2(1),所得的对应线段的比会相等吗?依据是什么?2、如果把图27.2-1中l1 , l2两条直线相交,交点A刚落到l4上,如图27.2-2(2),所得的对应线段的比会相等吗?依据是什么?3、 归纳总结:平行线分线段成
11、比例定理推论 平行于三角形一边的直线截其他两边(或两边延长线),所得的_线段的比_.三. 练习巩固 如图,在ABC中,DEBC,AC=4 ,AB=3,EC=1.求AD和BD.四. 小结巩固(1) 谈谈本节课你有哪些收获(2) 相似比是带有顺序性和对应性的:如ABCABC的相似比,那么ABCABC的相似比就是,它们的关系是互为倒数五、当堂检测1如图,ABCAED, 其中DEBC,找出对应角并写出对应边的比例式2如图,ABCAED,其中ADE=B,找出对应角并写出对应边的比例式27.2.1 相似三角形的判定(二)一、学习目标1经历两个三角形相似的探索过程,体验分析归纳得出数学结论的过程2会运用“两
12、个三角形相似的判定条件”和“三角形相似的预备定理”解决简单的问题二、学习重点、难点1重点:相似三角形的定义与三角形相似的预备定理2难点:三角形相似的预备定理的应用三 知识链接(1)相似多边形的主要特征是什么?(2) 平行线分线段成比例定理及其推论的内容是什么?(3)在相似多边形中,最简单的就是相似三角形在ABC与ABC中,如果A=A, B=B, C=C, 且 我们就说ABC与ABC相似,记作 ,k就是它们的相似比反之如果ABCABC,则有 (4)问题:如果k=1,这两个三角形有怎样的关系?四 、探索新知1 问题:如果ABCADE,那么你能找出哪些角的关系?边呢?2 .思考:如图27.2-3,在
13、ABC中,DEBC,DE分别交AB,AC于点D,E。问题:(1) ADE与ABC满足“对应角相等”吗?为什么?(2) ADE与ABC满足对应边成比例吗?由“DEBC”的条件可得到哪些线段的比相等 (3) 根据以前学习的知识如何把DE移到BC上去?(作辅助线EFAB)你能证明AE:AC=DE:BC吗?(4)写出ABCADE的证明过程。(5) 、归纳总结:判定三角形相似的(预备)定理:五、例题讲解例1(补充)如图ABCDCA,ADBC,B=DCA(1)写出对应边的比例式;(2)写出所有相等的角;(3)若AB=10,BC=12,CA=6求AD、DC的长例2(补充)如图,在ABC中,DEBC,AD=E
14、C,DB=1cm,AE=4cm,BC=5cm,求DE的长 六、课堂练习1下列各组三角形一定相似的是( )A两个直角三角形 B两个钝角三角形 C两个等腰三角形 D两个等边三角形 2如图,DEBC,EFAB,则图中相似三角形一共有( )A1对 B2对 C3对 D4对3、如图,ABEFCD,图中共有 对相似三角形,写出来并说明理由;4如图,在ABCD中,EFAB,DE:EA=2:3,EF=4,求CD的长 七、当堂检测1如图,ABCAED, 其中DEBC,写出对应边的比例式2如图,ABCAED,其中ADE=B,写出对应边的比例式 3如图,DEBC,(1)如果AD=2,DB=3,求DE:BC的值;(2)
15、如果AD=8,DB=12,AC=15,DE=7,求AE和BC的长 27.2.1相似三角形的判定(三)学习目标:(1) 初步掌握“三组对应边的比相等的两个三角形相似”的判定方法,以及“两组对应边的比相等且它们的夹角相等的两个三角形相似”的判定方法(2) 能够运用三角形相似的条件解决简单的问题重点、难点学习重点: 掌握两种判定方法,会运用两种判定方法判定两个三角形相似。学习难点: (1)三角形相似的条件归纳、证明;(2)会准确的运用两个三角形相似的条件来判定三角形是否相似一.知识链接(1) 两个三角形全等有哪些判定方法?(2) 我们学习过哪些判定三角形相似的方法?(3) 相似三角形与全等三角形有怎
16、样的关系?二 、探索新知 探讨问题:1、如图,如果要判定ABC与ABC相似,是不是一定需要一一验证所有的对应角和对应边的关系?2、可否用类似于判定三角形全等的SSS方法,能否通过一个三角形的三条边与另一个三角形的三条边对应的比相等,来判定两个三角形相似呢?3、 探究2 任意画一个三角形,再画一个三角形,使它的各边长都是原来三角形各边长的k倍,度量这两个三角形的对应角,它们相等吗?这两个三角形相似吗?与同学交流一下,看看是否有同样的结论。(1)问题:怎样证明这个命题是正确的呢?(2)探求证明方法(已知、求证、证明)如图27.2-4,在ABC和ABC中,求证ABCABC4 【归纳】 三角形相似的判
17、定方法1 如果两个三角形的三组对应边 5 、探讨问题:可否用类似于判定三角形全等的SAS方法,能否通过两个三角形的两组对应边的比相等和它们对应的夹角相等,来判定两个三角形相似呢?(画图,自主展开探究活动)6 【归纳】 三角形相似的判定方法2 两个三角形的两组对应边的比相等,且 三、例题讲解例2 (补充)已知:如图,在四边形ABCD中,B=ACD,AB=6,BC=4,AC=5,CD=,求AD的长四、课堂练习1如果在ABC中B=30,AB=5,AC=4,在ABC中,B=30AB=10,AC=8,这两个三角形一定相似吗?试着画一画、看一看? 2如图,ABC中,点D、E、F分别是AB、BC、CA的中点
18、,求证:ABCDEF五、回顾与反思(1)谈谈本节课你有哪些收获六 当堂检测1如图,ABAC=ADAE,且1=2,求证:ABCAED2已知:如图,P为ABC中线AD上的一点,且BD2=PDAD,求证:ADCCDP 27.2.1 相似三角形的判定(四)一、学习目标1掌握“两角对应相等,两个三角形相似”的判定方法2能够运用三角形相似的条件解决简单的问题二、重点、难点1重点:三角形相似的判定方法3“两角对应相等,两个三角形相似”2难点:三角形相似的判定方法3的运用三、知识链接(1)我们已学习过哪些判定三角形相似的方法?(2)如图,ABC中,点D在AB上,如果AC2=ADAB,那么ACD与ABC相似吗?
19、说说你的理由(3)如(2)题图,ABC中,点D在AB上,如果ACD=B,那么ACD与ABC相似吗? (4)【归纳】三角形相似的判定方法3 如果一个三角形的两个角与另一个三角 四、例题讲解例1(教材P46例2)弦AB和CD相交于o内一点P,求证:PAPB=PCPDABCDPO例2 (补充)已知:如图,矩形ABCD中,E为BC上一点,DFAE于F,若AB=4,AD=5,AE=6,求DF的长五、课堂练习1 、填一填(1)如图3,点D在AB上,当 时, ACDABC。ABDC图 3 ABCE图 4(2)如图4,已知点E在AC上,若点D在AB上,则满足 条件 ,就可以使ADE与原ABC相似。2已知:如图
20、,1=2=3,求证:ABCADE4下列说法是否正确,并说明理由(1)有一个锐角相等的两直角三角形是相似三角形;(2)有一个角相等的两等腰三角形是相似三角形六、作业1、在ABC和ABC中,如果A80,C60,A80,B40,那么这两个三角形是否相似?为什么?2、已知:如图,ABC 的高AD、BE交于点F求证:3已知:如图,BE是ABC的外接圆O的直径,CD是ABC的高(1)求证:ACBC=BECD; (2)若CD=6,AD=3,BD=8,求O的直径BE的长6 .已知D、E分别是ABC的边AB,AC上的点,若A=35, C=85,AED=60 求证:ADAB= AEAC27.2.2相似三角形应用举
21、例(一)学习目的:1 进一步巩固相似三角形的知识 2 能够运用三角形相似的知识,解决不能直接测量物体的长度和高度(如测量金字塔高度问题、测量河宽问题、盲区问题)等的一些实际问题 3 通过把实际问题转化成有关相似三角形的数学模型,进一步了解数学建模的思想,培养分析问题、解决问题的能力学习重点、难点1重点:运用三角形相似的知识计算不能直接测量物体的长度和高度2难点:灵活运用三角形相似的知识解决实际问题(如何把实际问题抽象为数学问题)一、知识链接1、判断两三角形相似有哪些方法?2、相似三角形有什么性质?二、.探索新知1、问题1:学校操场上的国旗旗杆的高度是多少?你有什么办法测量?2、世界现存规模最大
22、的金字塔位于哪个国家,叫什么金字塔?3、例题讲解例3:据史料记载,古希腊数学家、天文学家泰勒斯曾经利用相似三角形的原理,在金字塔影子的顶部立一根木杆,借助太阳光线构成的两个相似三角形来测量金字塔的高度如图,如果木杆EF长2 m,它的影长FD为3 m,测得OA为201 m,求金字塔的高度BO (思考如何测出OA的长?) 4、 课堂练习在某一时刻,有人测得一高为1.8米的竹竿的影长为3米,某一高楼的影长为90米,那么高楼的高度是多少米? (在同一时刻物体的高度与它的影长成正比例)问题:估算河的宽度,你有什么好办法吗?5、例4 如图,为了估算河的宽度,我们可以在河对岸选定一个目标P,在近岸取点Q和S
23、,使点P、Q、S共线且直线PS与河垂直,接着在过点S且与PS垂直的直线a上选择适当的点T,确定PT与过点Q且垂直PS的直线b的交点R如果测得QS = 45 m,ST = 90 m,QR = 60 m,求河的宽度PQ 6、课堂练习如图,测得BD=120 m,DC=60 m,EC=50 m,求河宽AB。结合此题写出测量河宽的方案。三、回顾与反思谈谈本节课你有哪些收获四、当堂检测1 如图,这是圆桌正上方的灯泡(当成一个点)发出的光线照射桌面形成阴影的示意图,已知桌面的直径为1.2米,桌面距离地面为1米,若灯泡距离地面3米,则地面上阴影部分的面积为多少?ABCD2.为了测量一池塘的宽AB,在岸边找到了
24、一点C,使ACAB,在AC上找到一点D,在BC上找到一点E,使DEAC,测出AD=35m,DC=35m,DE =30m,那么你能算出池塘的宽AB吗? 3、如图,一条河的两岸有一段是平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆小丽站在离南岸边15米的点处看北岸,发现北岸相邻的两根电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为米 27.2.3相似三角形的周长与面积【学习目的】:1、相似三角形的一切对应线段的比都等于相似比。2、 理解并初步掌握相似三角形周长的比等于相似比,面积的比等于相似比的平 方3、 能用三角形的性质解决简单的问题【学习重点、难点】1
25、重点:相似三角形的性质与运用2难点:相似三角形性质的灵活运用,及对“相似三角形面积的比等于相似比的平方”性质的理解,特别是对它的反向应用的理解,即对“由面积比求相似比”的理解一.知识链接1问题:已知: ABCABC,根据相似的定义,我们有哪些结论?(从对应边上看; 从对应角上看:)问:两个三角形相似,除了对应边成比例、对应角相等之外,我们还可以得到哪些结论? 二 、探索新知1思考:(1)如果两个三角形相似,它们的周长之间有什么关系?我们知道,如果ABCABC,且ABC与ABC的相似比为k,即 因此AB=k AB,BC=k BC,CA=k CA,从而 由此我们得到: 相似三角形周长的比等于 (2
26、)如果两个三角形相似,它们的对应边上的高线、中线,对应角的平分线之间有什么关系?写出推导过程。(3)如果两个三角形相似,它们的面积之间有什么关系?写出推导过程。(4)两个相似多边形的周长和面积分别有什么关系?2 、结论相似三角形的性质: 性质1 相似三角形周长的比等于 ,对应高的比等于 即:如果 ABC ABC,且相似比为k , 那么 性质2 相似三角形面积的比等于 即:如果 ABC ABC,且相似比为k , 那么 三、例题讲解 例 1(补充) 已知:如图:ABC ABC,它们的周长分别是 60 cm 和72 cm,且AB15 cm,BC24 cm,求BC、AB、AB、AC的长 例2(教材P5
27、2例6)如图在ABC 和DEF中,AB=2DE,AC=2DF,A=D,ABC的周长是24,面积是12,求DEF的周长和面积。 四、课堂练习1填空:(1)如果两个相似三角形对应边的比为35 ,那么它们的相似比为_,周长的比为_,面积的比为_(2)如果两个相似三角形面积的比为35 ,那么它们的相似比为_,周长的比为_(3)连结三角形两边中点的线段把三角形截成的一个小三角形与原三角形的周长比等于_,面积比等于_(4)两个相似三角形对应的中线长分别是6 cm和18 cm,若较大三角形的 周长是42 cm ,面积是 12 cm 2,则较小三角形的周长为_cm,面积为_cm23如图,在正方形网格上有A1B
28、1C1和A2B2C2,这两个三角形相似吗?如果相似,求出A1B1C1和A2B2C2的面积比五、课堂小结六 、当堂检测1、判断题:(1)如果把一个三角形各边同时扩大为原来的5倍,那么它的周长也扩大为原来的5倍。(2)如果把一个三角形的面积扩大为原来的9倍,那么它的三边也扩大为原来的9倍。FEDCBA2、ABC中,DEBC,EFAB,已知ADE和EFC的面积分别为4和9,求ABC的面积。3如图,点D、E分别是ABC边AB、AC上的点,且DEBC,BD2AD,那么ADE的周长ABC的周长 27.3位似(一)【学习目标】1了解位似图形及其有关概念,了解位似与相似的联系和区别,掌握位似图形的性质2掌握位
29、似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小【学习重点、难点】1重点:位似图形的有关概念、性质与作图2难点:利用位似将一个图形放大或缩小一.创设情境活动1 教师活动:提出问题:生活中我们经常把自己好看的照片放大或缩小,由于没有改变图形的形状,我们得到的照片是真实的. (教材P59页思考)观察图27.3-2图中有多边形相似吗?如果有,那么这种相似什么共同的特征? 图27.3-2学生活动:学生通过观察了解到有一类相似图形,除具备相似的所有性质外,还有其特性,学生自己归纳出位似图形的概念:如果两个图形不仅是相似图形,而且是每组对应点连线相交于一点,对应边互相平行,那么这样的两个图形叫做
30、位似图形. 这个点叫做位似中心.这时的相似比又称为相似比.(位似中心可在形上、形外、形内.) 每对位似对应点与位似中心共线;不经过位似中心的对应线段平行二、利用位似,可以将一个图形放大或缩小活动2 教师活动:提出问题: (教材P60例题)把图1中的四边形ABCD缩小到原来的 分析:把原图形缩小到原来的,也就是使新图形上各顶点到位似中心的距离与原图形各对应顶点到位似中心的距离之比为12 作法一:(1)在四边形ABCD外任取一点O;(2)过点O分别作射线OA,OB,OC,OD;(3)分别在射线OA,OB,OC,OD上取点A、B、C、D,使得;(4)顺次连接AB、BC、CD、DA,得到所要画的四边形
31、ABCD,如图2问:此题目还可以如何画出图形?作法二:(1)在四边形ABCD外任取一点O;(2)过点O分别作射线OA, OB, OC,OD;(3)分别在射线OA, OB, OC, OD的反向延长线上取点A、B、C、D,使得;(4)顺次连接AB、BC、CD、DA,得到所要画的四边形ABCD,如图3 作法三:(1)在四边形ABCD内任取一点O;(2)过点O分别作射线OA,OB,OC,OD;(3)分别在射线OA,OB,OC,OD上取点A、B、C、D,使得;(4)顺次连接AB、BC、CD、DA,得到所要画的四边形ABCD,如图4(当点O在四边形ABCD的一条边上或在四边形ABCD的一个顶点上时,作法略可以让学生自己完成)三、课堂练习 活动3 教材P60页1、2小结:谈谈你这节课学习的收获 27.3位似(二)【学习目标】1巩固位似图形及其有关概念2会用图形的坐标的变化来表示图形的位似变换,掌握把一个图形按一定大小比例放大或缩小后
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小轿车买卖合同4篇
- 2024-2025学年山西省忻州市七年级(下)第一次月考数学试卷(含答案)
- 0-3岁婴幼儿游戏知到智慧树答案
- 风险投资对科技创新企业孵化的影响分析
- 户外拓展活动总结15篇
- 2025年续签商业店铺租赁合同
- 2024年秋新北师大版数学一年级上册教学课件 第五单元 有趣的立体图形 综合实践 记录我的一天
- 管道安装过程中的安全防护
- 风电场施工人员培训方案
- 水稻课件模板
- 2025年秋季学期第一次中层干部会议上校长讲话:凝心聚力明方向沉心落力干实事
- 广西2025年公需科目学习考试试题及答案4
- 代加工板材合同协议书范本
- 2025年事业单位工勤技能-湖南-湖南地质勘查员二级(技师)历年参考题库含答案解析(5卷)
- 肝炎的分型及护理
- 高中语文38篇课内文言文挖空一遍过(教师版)
- 2025年高考真题物理(四川卷)-2
- 企业负责人财税知识培训
- 【前程无忧】2025校招人才素质洞察白皮书
- 船舶制造公司管理制度
- 2025至2030年中国石油化工自动化仪表产业发展动态及未来趋势预测报告
评论
0/150
提交评论