




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、物理化学论文系别 : 专业 : 姓名 : 学号 : 班级 : 热力学定律论文论文摘要:本论文就物理化学的热力学三大定律的具体内容展开思考、总结论述。同时,也就物理化学的热力学三大定律的生活、科技等方面的应用进行深入探讨。正文:一、热力学第一定律:热力学第一定律就是宏观体系的能量守恒与转化定律。“IUPAC”推荐使用热力学能,从深层次告诫人们不要再去没完没了的去探求内能是系统内部的什么东西”,中国物理大师严济慈早在1966年就已指出这点。第一定律是1842年前后根据焦耳等人进行的“功”和“热”的转换实验发现的。它表明物质的运动在量的方面保持不变,在质的方面可以相互转化。但是,没有多久,人们就发现
2、能量守恒定律与1824年卡诺定理之间存在“矛盾”。能量守恒定律说明了功可以全部转变为热: 但卡诺定理却说热不能全部转变为功。1845年后的几年里,物理学证明能量守恒定律和卡诺定理都是正确的。那么问题出在哪呢?由此导致一门新的科学-热力学的出现。自然界的一切物质都具有能量,能量有各种不同形式,能够从一种形式转化为另一种形式,在转化中,能量的总量不变。其数学描述为:Q=E+W,其中的Q和W分别表示在状态变化过程中系统与外界交换的热量以及系统对外界所做的功,E表示能量的增量。一般来说,自然界实际发生的热力学过程,往往同时存在两种相互作用,即系统与外界之间既通过做功交换能量,又通过传热交换能量。热力学
3、第一定律表明:当热力学系统由某一状态经过任意过程到达另一状态时,系统内能的增量等于在这个过程中外界对系统所作的功和系统所吸收的热量的总和。或者说:系统在任一过程中所吸收的热量等于系统内能的增量和系统对外界所作的功之和。热力学第一定律表达了内能、热量和功三者之间的数量关系,它适用于自然界中在平衡态之间发生的任何过程。在应用时,只要求初态和终态是平衡的,至于变化过程中所经历的各个状态,则并不要求是平衡态好或无限接近于平衡态。因为内能是状态函数,内能的增量只由初态和终态唯一确定,所以不管经历怎样的过程,只要初、终两态固定,那么在这些过程中系统内能的增量、外界对系统所作的功和系统所吸收的热量的之和必定
4、都是相同的。热力学第一定律是能量转化和守恒定律在射击热现象的过程中的具体形式。因为它所说的状态是指系统的热力学状态,它所说的能量是指系统的内能。如果考察的是所有形式的能量(机械能、内能、电磁能等),热力学第一定律就推广为能量守恒定律。这个定律指出:自然界中各种不同形式的能量都能从一种形式转化为另一种形式,由一个系统传递给另一个系统,在转化和传递中总能量守恒。能量守恒定律是自然界中各种形态的运动相互转化时所遵从的普遍法则。自从它建立起来以后,直到今天,不但没有发现任何违反这一定律的事实,相反地,大量新的实践不断证明着这一定律的正确性,丰富着它所概括的内容。能量守恒定律的确立,是生产实践和科学实验
5、长期发展的结果,在长期的实践中,人们很早以来就逐步形成了这样一个概念,即自然界的一切物质在运动和变化的过程中,存在着某种物理量,它在数量上始终保持恒定。能量守恒定律的实质,不仅在于说明了物质运动在量上的守恒,更重要的还在于它揭示了运动从一种形态向另一形态的质的转化,所以,只有当各种运动形式之间的相互转化,特别是机械运动和热运动之间的相互转化明确而广泛地被揭示出来时,能量守恒定律才会最终地被确立起来。其中,当我们研究热力学第一定律时,还要提及的就是第一类永动机,接下来让我们看一下第一类永动机的定义,即某物质循环一周回复到初始状态,不吸热而向外放热或作功,这叫“第一类永动机”,这种机器不需要外界提
6、供能量,却可以源源不断的对外做功。显然,第一类永动机违反热力学第一定律,因此热力学第一定律有可以表述为:不可能制造出第一类永永动机。任何定律从提出开始就会受到人们不断的质疑和挑战。所以从热力学第一定律提出之后,人们提出了种种第一类永动机的设计方案。以下我们分析一下几种第一类永动机的设计方案。(1)奥恩库尔的永动机据说,13世纪有一个法国人叫奥恩库尔的,他在一个轮子的边缘上等间隔地安装了12根可活动的锤杆。他设想一旦轮子被启动,由于轮子右边的各个重锤距轮轴更远些,就会驱动轮子按箭头方向永不停息地转动下去。分析:设想该机器置于真空当中,即运行时不受到空气阻力,但我们知道轮轴与转盘的接触面不可能绝对
7、光滑,运行时势必会产生摩擦阻力,此时机械能转化成摩擦热能,机器将会慢慢停止。此方案不可行。(2)滚珠永动机滚珠永动机是利用格板的特殊形状,使一边重球滚到比另一边的距离轮心远些的地方。设计者本以为在两边重球的作用下会使轮子失去平衡而转动不息,但试验的结果却是否定的。分析:我们先忽略其实践结果。滚珠式永动机的设计原理与奥恩库尔的永动机是相同的,都利用了轮新左右两边力矩不相等使轮轴不断转动。该设想也同样无法解决摩察阻力的问题,且在运转时,可能会出现一个正好使得轴心左右两端力矩相等的位置,这是如果轮轴的角速度正好为零,则机器停止转动。该设计不论从原理上或实践中都是失败的。(3)软臂永动机1570年,意
8、大利的泰斯尼尔斯,提出用磁石的吸力可以实现永动机。A是一个磁石,铁球G受磁石吸引可沿斜面滚下去,滚到上端的E处,从小洞B落下,经曲面BFC返回,复又被磁石吸引,铁球就可以沿螺旋途径连续运动下去。分析:软臂永动机的臂可以弯曲。臂上有槽,小球沿凹槽滚向伸长的臂端,使力矩增大。转到另一侧,软臂开始弯曲,向轴心靠拢。设计者认为这样可以使机器获得转矩。然而,他没有想到力臂虽然缩短了,力却增大了,转轮只能停止在原地。(4)阿基米德螺旋永动机把水从蓄水池里汲到上面的水槽里,让它冲击水轮使之转动,轮子在带动水磨的同时,又通过一组齿轮带动螺旋汲水器把水重新提到水槽里去。这样,整台机械就可以永不停息地运转下去。可
9、行性分析:这样的设计当然也必然以失败告终。因为即使没有摩擦力,从水槽中流下的水的冲力,也不足以既带动水磨工作,又带动汲水器把全部流下的水重新汲回到原来的高度。(5)浮力型永动机利用球的重力使球串向下并接触水面,进而利用水的浮力上升,推动轮子转动。可行性分析:浮力控制,出口的的坡度控制(影响求脱离管子落到轴轮上的速度)都很难精确地实现。运转过程中只要有水漏出,下一个球将无法从管道中落下,且随着轴轮转动时间增长,摩擦阻力增大,轴将停止转动。 人们认为以上各设计方案都很巧妙,充分利用了大自然中本来就存在的力,如磁力,水的浮力以及力矩作用。当然,近年来也有人提出了可以利用万有引力提供远远不断力的来源,
10、或者可以利用电磁力实现永动。但我们不能忽视一个在所有设想方案中都存在的问题-器械间的摩擦阻力。在实现器械间零摩擦前,不可能制造出第一类永动机。所以解决摩擦问题是关键,近年来提出利用超导体来实现无摩擦。我们知道,温度越低,超导的效果越好,当无限接近绝对零度时,也许可以彻底消除摩擦。但由热力学第三定律,绝对零度不可能达到。以当前的科学技术,实验室温度最多达到一百多开尔文。就当今科学技术发展而言我认为第一类永动机不可能制造出来。不过,科技在不断发展,随着一个个定律被推翻,也许,第一类永动机会被成功制造。应用:技术上的循环实例,在热动力设备中,多数是通过气体进行一系列热力学过程来实现热功转换的。例如生
11、活中常见的内燃机,它们是利用工作物质作正循环的热力学过程,而利用逆循环则可制成致冷机,常见的有家用电冰箱、空调机。常见热机的工作原理:1. 汽油内燃机: 定体加热循环奥托循环,四个冲程依次为吸气冲程、压缩冲程、动力冲程、排气冲程。2. 柴油内燃机: 定压加热循环狄塞尔循环,四个冲程依次为吸气冲程、压缩冲程、动力冲程、排气冲程。与汽油机不同的是它吸入的不是混合气而是空气,燃料的燃烧也不是靠电火花点燃而是压燃。常见致冷机的工作原理:1. 电冰箱: 一般的家用电冰箱是利用氨蒸汽压缩制冷装置的制冷原理。工质氨在标准大气压下的沸点为-33.35,在室温下为蒸汽状态,但加压即可使之液化。电动机带动的压缩机
12、将氨蒸汽压缩到压强为9.09105Pa,温度达到70。氨蒸汽经冷凝器散热冷却到20并凝结为液态氨。然后经膨胀阀压强降到约3.03105Pa而进入位于冷冻室内的蒸发器,在蒸发器中液氨沸腾,从冷冻室中吸收汽化热而全部变为-10的气体,使冷冻室内的温度降至-5,氨蒸汽本身再进入压缩机重新进行下一循环。在这一循环过程中,伴随着外界作功,工质氨从低温物体吸收热量传给高温物体,达到使低温物体更加冷却的目的。2. 空调机: 空调机的循环与电冰箱相同,一般也采用蒸汽压缩制冷,不同的是它可以通过一个电磁换向阀使制冷剂(工质)改变流向。在夏季,使被压缩后高温高压蒸汽先通过室外换热器经凝结而向室外空气(高温热源)散
13、热,然后变成低压液体通过室内换热器经蒸发而从室内空气(低温热源)吸热,把空调设备用作制冷机,是室内降温;冬季,使被压缩的蒸汽先通过室内换热器凝结而向室内空气(高温热源)放热,然后变成低压液体通过室外换热器经蒸发而室外空气(低温热源)吸热,把设备用作热泵,给室内供热。 二、热力学第二定律:自然界自发进行的过程具有方向性,总是由非平衡态走向平衡态1. 开尔文表述(1851年):不可能制成一种循环动作的热机,只从单一热源吸取热量,使之完全变成有用的功而不产生其他影响。2. 克劳修斯表述:热量不可能自动地从低温物体传到高温物体。下面我们从反面来说明这两种说法的确是等价的:如果我们否定克劳修斯的说法,认
14、为热量可以自发地从低温物体B传向高温物体A,见图41(a)的示意图,设这个热量为Q,我们再设想有一个卡诺热机,从高温热源A吸取热量Q,一部分转化为有用功W,另一部分Q传给了低温热源B,这样的整个过程中,高温热源A没有发生变化,相当于只从低温热源B吸收了(QQ)的热量而全部转化为有用功,而不产生其他影响,从而开尔文的说法也就被否定了。反过来,如果我们否定了开尔文的说法,认为可以从单一热源A吸取热量,全部转化为有用功而不产生其他影响,见图41(b)的示意图,设这部分热量为Q1,做的有用功为W1(Q1W1),我们再设想这部分有用功是带动一个理想的致冷机工作,它从另一个低温热源B处吸收热量Q2,向热源
15、A放出热量Q1,则满足Q1=Q2W1,而Q1=W1,所以Q1=Q2Q1。这样,总的效果相当于从低温热源B处吸收了热量Q。,向高温热源A放出的热量Q1,在补偿了Q1以后,正好也是Q2,这就等于热量Q。自发地从低温热源B传向了高温热源地并没有发生其他变化,这就否定了克劳修斯的说法。以上我们从正反两个方面说明了关于热力学第二定律的两种说法是等价的,它们都是关于自然界涉及热现象的宏观过程的进行方向的规律。其实,热力学第二定律还可以有其他很多种不同的表述方式。例如我国有一句成语“覆水难收”,其实是“覆水不收”。脸盆里的水泼到地上,是不可能再收回来的,这也可以看作是热力学第二定律的一种表述形式。广义地讲,
16、只要指明某个方面不可逆过程进行的方向性就可以认为是热力学第二定律的一种表述,因为所有不可自然界自发进行的过程具有方向性,总是由非平衡态走向平衡态。1. 开尔文表述(1851年):不可能制成一种循环动作的热机,只从单一热源吸取热量,使之完全变成有用的功而不产生其他影响。如果我们否定克劳修斯的说法,认为热量可以自发地从低温物体B传向高温物体A,见图41(a)的示意图,设这个热量为Q,我们再设想有一个卡诺热机,从高温热源A吸取热量Q,一部分转化为有用功W,另一部分Q传给了低温热源B,这样的整个过程中,高温热源A没有发生变化,相当于只从低温热源B吸收了(QQ)的热量而全部转化为有用功,而不产生其他影响
17、,从而开尔文的说法也就被否定了。反过来,如果我们否定了开尔文的说法,认为可以从单一热源A吸取热量,全部转化为有用功而不产生其他影响,见图41(b)的示意图,设这部分热量为Q1,做的有用功为W1(Q1W1),我们再设想这部分有用功是带动一个理想的致冷机工作,它从另一个低温热源B处吸收热量Q2,向热源A放出热量Q1,则满足Q1=Q2W1,而Q1=W1,所以Q1=Q2Q1。这样,总的效果相当于从低温热源B处吸收了热量Q。,向高温热源A放出的热量Q1,在补偿了Q1以后,正好也是Q2,这就等于热量Q。自发地从低温热源B传向了高温热源地并没有发生其他变化,这就否定了克劳修斯的说法。以上我们从正反两个方面说
18、明了关于热力学第二定律的两种说法是等价的,它们都是关于自然界涉及热现象的宏观过程的进行方向的规律。其实,热力学第二定律还可以有其他很多种不同的表述方式。例如我国有一句成语“覆水难收”,其实是“覆水不收”。脸盆里的水泼到地上,是不可能再收回来的,这也可以看作是热力学第二定律的一种表述形式。广义地讲,只要指明某个方面不可逆过程进行的方向性就可以认为是热力学第二定律的一种表述,因为所有不逆。热力学第二定律的实质:可逆过程与不可逆过程。一个热力学系统,从某一状态出发,经过某一过程达到另一状态。若存在另一过程,能使系统与外界完全复原(即系统回到原来的状态,同时消除了原来过程对外界的一切影响),则原来的过
19、程称为“可逆过程”。反之,如果用任何方法都不可能使系统和外界完全复原,则称之为“不可逆过程”。可逆过程是一种理想化的抽象,严格来讲现实中并不存在(但它在理论上、计算上有着重要意义)。大量事实告诉我们:与热现象有关的实际宏观过程都是不可逆过程。对于开氏与克氏的两种表述的分析:克氏表述指出:热传导过程是不可逆的。开氏表述指出:功变热(确切地说,是机械能转化为内能)的过程是不可逆的。两种表述其实质就是分别挑选了一种典型的不可逆过程,指出它所产生的效果不论用什么方法也不可能使系统完全恢复原状,而不引起其他变化。请注意加着重号的语句:“而不引起其他变化”。比如,制冷机(如电冰箱)可以将热量Q由低温T2处
20、(冰箱内)向高温T1处(冰箱外的外界)传递,但此时外界对制冷机做了电功W而引起了变化,并且高温物体也多吸收了热量Q(这是电能转化而来的)。这与克氏表述并不矛盾。不可逆过程几个典型例子:气体向真空自由膨胀) 如图1所示,容器被中间的隔板分为体积相等的两部分:A部分盛有理想气体,B部分为真空。现抽掉隔板,则气体就会自由膨胀而充满整个容器。例2(两种理想气体的扩散混合) 如图2所示,两种理想气体C和D被隔板隔开,具有相同的温度和压强。当中间的隔板抽去后,两种气体发生扩散而混合。例3 焦耳的热功当量实验。这是一个不可逆过程。在实验中,重物下降带动叶片转动而对水做功,使水的内能增加。但是,我们不可能造出
21、这样一个机器:在其循环动作中把一重物升高而同时使水冷却而不引起外界变化。由此即可得热力学第二定律的“普朗克表述”。再如焦耳-汤姆生(开尔文)多孔塞实验中的节流过程和各种爆炸过程等都是不可逆过程。含义:对上面所列举的不可逆过程以及自然界中其他不可逆过程,我们完全能够由某一过程的不可逆性证明出另一过程的不可逆性,即自然界中的各种不可逆过程都是互相关联的。我们可以选取任一个不可逆过程作为表述热力学第二定律的基础。因此,热力学第二定律就可以有多种不同的表达方式。但不论具体的表达方式如何,热力学第二定律的实质在于指出:一切与热现象有关的实际宏观过程。可都是不可逆的,并指出这些过程自发进行的方向。 热力学
22、第二定律,也可以确定一个新的态函数熵以用熵来对第二定律作定量的表述。 第二定律指出在自然界中任何的过程都不可能自动地复原,要使系统从终态回到初态必需借助外界的作用,由此可见,热力学系统所进行的不可逆过程的初态和终态之间有着重大的差异,这种差异决定了过程的方向,人们就用态函数熵来描述这个差异,从理论上可以进一步证明:可逆绝热过程Sf=Si, 不可逆绝热过程SfSi,式中Sf和Si分别为系统的最终和最初的熵。也就是说,在孤立系统内对可逆过程,系统的熵总保持不变;对不可逆过程,系统的熵总是增加的。这个规律叫做熵增加原理。这也是热力学第二定律的又一种表述。熵的增加表示系统从几率小的状态向几率大的状态演
23、变,也就是从比较有规则、有秩序的状态向更无规则,更无秩序的状态演变。熵体现了系统的统计性质。第二定律在有限的宏观系统中也要保证如下条件:(1)该系统是线性的;(2)该系统全部是各向同性的。适用范围:(1)热力学第二定律是宏观规律,对少量分子组成的微观系统是不适用的。(2)热力学第二定律适用于“绝热系统”或“孤立系统”,对于生命体(开放系统)是不适用的。早在1851年开尔文在叙述热力学第二定律时,就曾特别指明动物体并不像一架热机一样工作,热力学第二定律只适用于无生命物质。(3)热力学第二定律是建筑在有限的空间和时间所观察到的现象上,不能被外推应用于整个宇宙。19世纪后半期,有些科学家错误地把热力
24、学第二定律应用到无限的、开放的宇宙,提出了所谓“热寂说”。他们声称:将来总有一天,全宇宙都是要达到热平衡,一切变化都将停止,从而宇宙也将死亡。要使宇宙从平衡状态重新活动起来,只有靠外力的推动才行。这就会为“上帝创造世界”等唯心主义提供了所谓“科学依据”。“热寂说”的荒谬,在于把无限的、开放的宇宙当做热力学中所说的“孤立系统”。热力学中的“孤立系统”与无所不包、完全没有外界存在的整个宇宙是根本不同的。事实上,科学后来的发展已经提供了许多事实,证明宇宙演变的过程不遵守热力学第二定律。正如恩格斯在自然辩证法中指出了“热寂说”的谬误。他根据物质运动不灭的原理,深刻地指出:“放射到太空中去的热一定有可能
25、通过某种途径指明这一途径,将是以后自然科学的课题转变为另一运动形式,在这种运动形式中,它能重新集结和活动起来。”热力学第二定律和热力学第一定律一样,是实践经验的总结,它的正确性是由它的一切推论都为实践所证实而得到肯定。 应用:对时间的理解我们已经知道,热力学第二定律事实上是所有单向变化过程的共同规律,而时间的变化就是一个单向的不可逆过程,对每个人都一样,时间一去不复还,因此还可以这样理解:时间的方向,就是熵增加的方向。这样,热力学第二定律就给出了时间箭头。物理学的进一步研究表明,能量守恒与时间的均匀性有关。这就是说,热力学第一定律告诉我们,时间是均匀流逝的。结果我们看到:热力学第一定律指出,时
26、间是均匀的;热力学第二定律指出,时间是有方向的。这两条定律合在一起告诉我们:时间在向着特定的方向均匀地流逝着。黑洞温度的发现1972年,30岁的英国青年物理学家霍金,提出了黑洞的“面积定理”。证明了黑洞的面积A随时间变化只能增加,不能减少,即 。这个定理认为,物质落入黑洞、两个黑洞相撞等导致黑洞面积增加的过程,是可以发生的。而一个黑洞分裂为两个黑洞的情况,由于会导致黑洞面积减少,因而是不可能发生的。面积定理,不由使人想起热力学中的“熵”。几乎与此同时,青年物理学家贝根斯坦和斯马尔,各自独立得出了关于黑洞的一个重要公式。这个公式把黑洞的一些参量组合成了类似于热力学第一定律的形式式中M、J、Q分别
27、是黑洞的总质量、总角动量、总电荷;A、V分别是黑洞的表面积、转动角速度和表面上的静电势。k称为黑洞的表面重力。此公式与普通转动物体的热力学第一定律表达式非常相似。式中U、T、S分别是系统的内能、温度和熵;、J、V、Q等物理意义与前式类似。比较这两个公式不难看出,黑洞面积A确实像熵S,而黑洞的表面重力k非常像温度T。热力学第二定律在化学反应中的应用根据热力学第二定律,一切自发过程都是不可逆过程。而一切不可逆过程的发展总是朝着使系统及有关周围物质的熵的总和趋于增大,只有在理想的可逆过程中两者熵的总和保持不变。即有dS+dS00把热力学第二定律应用于化学反应,就是要判断化学反应进行的方向以及确定达到
28、化学平衡的条件。大多数的化学反应可以按定温-定压反应或定温-定容反应分析。对于这类反应过程,系统的温度一定且与周围环境温度相同,因而有dS0=/T0=-/T代入熵增原理的表达式便可得到TdS-O化学反应过程有用功的表达式为-(dU-TdS)-在定温-定压反应中,GHTS,状态参数G称为吉布斯自由能,也称为吉布斯函数。把吉布斯自由能引入上述定温-定压反应过程的有用功的关系式,就可得dG对于可逆的定温-定压反应,反应系统可作出最大的有用功。按式dG()max=dG即在可逆的定温-定压过程中,系统所作的最大有用功等于系统吉布斯自由能的降低。对于不可逆定温-定压反应, WuG1G2(Wu)max即由于
29、不可逆因素的影响,系统所作的有用功小于最大有用功。在定温-定容反应过程中,反应系统的容积保持不变,故容积变化功为零。反应系统的有用功可表示为d(UTS)dF式中FUTS为一个状态参数,称为亥姆霍兹自由能,或称为亥姆霍兹函数。该式说明,在可逆的定温定容反应过程中,反应系统所作的最大有用功等于系统亥姆霍兹自由能的降低;而在不可逆的定温-定容反应过程中,系统所作的有用功小于系统亥姆霍兹自由能的降低。热力学第二定律是关于在有限空间和时间内,一切和热运动有关的物理、化学过程具有不可逆性的经验总结。它对于人类改进蒸汽机、内燃机和开发利用能源具有重要的指导意义。当然现在还存在很多现象需要我们去探索与总结,所
30、以物理探索的步伐永远都不会停止。三、热力学第三定律:在热力学第三定律建立以前,对熵函数的计算只能确定到具有一个任意附加常量的准确度.热力学第三定律可用一表达式表述为,其中指在等温过程中熵的改变.热力学第三定律的正确性早已经被实验所论证.而第三定律又是怎么被发现的呢?早在l699年法国科学家阿蒙顿就发明了一种温度计,他是从水的沸点开始他的测量工作的,他注意到温度与压强成正比.他得出结论:当进一步冷却空气,温度为某一确定的值时,空气的压力应改变为零.他估计这个温度为一240.此后,大约经过100年,法国物理学家盖吕萨克在查里的基础上,精确地测出气体定压膨胀系数为100/28866,l837年马格努
31、斯和勒尼奥更精确地测出气体的膨胀系数为000360.0037之间,即l/273.以此他推出最低温度为一273.这就是绝对零度的概念.在统计力学中,吉布斯一赫姆霍兹方程为: 上式应用于化学反应,标准自由熵为:标准反应:有以上可得T与的关系为:勒夏忒列首先指出:“I可能是物质的某种物理属性的函数,这个函数将导致化学平衡规律的完善了解,使我们能预测化学反应的平衡条件,若某化学反应为另两反应之和,则I为两反应的I之和;相同类型的反应有相同的I”.路易斯也研究了上式,发现I近似等于零的少数情况除外,所得数据不足以精确表示成式子.l902年查理兹进一步作了这方面的研究,他测定了丹尼尔电池的电动势与温度的关
32、系,结果发现,随着温度的降低,电池反应的与越来越接近,当时,两者相等.l906年能斯特按上述结果,在凝聚系统发生变化时,随着温度的降低,发现和不断接近,在OK时两者相等,即.因为,所以,分析此式,能斯特认为当时,即:.于是能斯特总结出:“凝结系统中的恒温物理和化学变化的熵变随热力学温度同趋于零.”这就是能斯特热定理.能斯特提出了热定理以及后来的OK不能达到原理后,其他许多物理学家和化学家又作了进一步的研究,并提出了相应的关于热力学第三定律的几种说法.1、普朗克说法1911年普朗克在能斯特假定的基础上进一步假设,即当温度趋近于0K时不仅熵变为零而且“在绝对零度时纯物质凝聚态的熵值等于零”指出能斯特热定理确定了熵的绝对值即:limS=0.这就是普朗克说法.该说法有两个显著的特点:一是它不同于能斯
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 输电线路接地电阻测量方案
- 建筑工程钢筋绑扎施工方案
- 宿舍楼电气系统负荷均衡管理方案
- 实验室检查山东医学高等专科学校血液学检验52课件
- 输电线路抗震设计技术方案
- 鸡场节能减排技术
- 水电线路图基础知识培训课件
- 水电看图基础知识培训课件
- 水电暖安全知识培训课件
- 2025版债务偿还与子女抚养权离婚协议执行标准
- 肿瘤的诊断与治疗
- 【高朋律师事务所】RWA发展研究报告:法律、监管和前瞻(2025年)
- DB42∕T 2272-2024 微粒化岩沥青改性沥青路面施工技术规范
- 办公耗材应急方案(3篇)
- 新高中班级团建活动方案
- 护理执行医嘱制度
- 渠道拓展培训
- 动画场景设计流程
- 2025年山东省济南市中考英语模拟试题(含答案)
- 船舶拖带协议书
- 儿童血压测量课件
评论
0/150
提交评论