龙门式起重机总体设计及金属结构设计_第1页
龙门式起重机总体设计及金属结构设计_第2页
龙门式起重机总体设计及金属结构设计_第3页
龙门式起重机总体设计及金属结构设计_第4页
龙门式起重机总体设计及金属结构设计_第5页
已阅读5页,还剩57页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、辽宁工程技术大学本科毕业设计(论文)教 务 处2005年12月中文题目:龙门式起重机总体设计及金属结构设计 外文题目:Dragon Gate Cranes design and metal structure design 毕业设计(论文)共 页(其中:外文文献及译文02页) 图纸共2张 完成日期 2006年6月 答辩日期 摘要:起重运输机金属结构主要构件所用的材料有普通碳素钢,优质碳素结构钢,普通低合金钢,合金结构钢。金属结构的支座常用铸钢。金属结构的联分为焊接和螺栓联接两大类。 关键词: 起重机,金属结构,承载能力,疲劳强度,强度。 SummarySince the reform and

2、opening up, with the rapid development of the national economy, the growing market demand for cranes. In recent years, the crane industry has been around for 15% growth rate, rapid development, the ownership of components crane industry has undergone tremendous changes, with the exception of state-o

3、wned professional crane plant, collective, joint ventures, investment and private development has been rapid.Promote research to improve productivity and product quality, reduce costs and expand the scope of application of the various field cranes and crane technology development directions. Current

4、 and emerging high-performance succession process, the capacity to adapt to the working environment, supports a strong ability to function, to resist fatigue strength to resist bending performance and the performance of refined performance, colleges, and economic crane design new methods.Although Ch

5、inese crane industry in the past 10 years has made remarkable progress, but with many industry lags far behind developed countries.Currently, the major lift transport aircraft structural components used in the metal materials with ordinary carbon steel, quality carbon structural steel, low alloy ste

6、el ordinary, alloy structural steel. Common cast steel base metal structure. Metal welding and bolts into the structure of the links in two broad categories. key wordS: Cranes, metal structure, carrying capacity, fatigue strength, intensity目录2龙门式起重机设计的总体设计方案52.1龙门起重机总体设计所需的基本参数52.2起重机的选型62.2.1起重机基本型

7、式的选择62.2.2起重机主要性能指标的选择63 起重机金属结构设计73.1金属结构概述73.2箱形结构门架强度计算83.2.1金属结构的基本参数选择与设计计算103.2.2 主减速器的润滑163.3驱动桥-差速器183.3.1对称式圆锥行星齿轮差速器的基本参数选择与设计计算193.4 驱动桥-半轴253.4.1全浮式半轴的设计计算与校核253.5 驱动桥-桥壳283.5.1 钢板冲夺焊接整体式桥壳的受力分析及强度计算294 总结32致谢33参考文献34附录A35附录B37概述龙门起重机的种类很多,按龙门起重机龙门架的七部结构型式可以分为单梁龙门起重机、双梁龙门起重机和单梁龙门起重机和单主梁龙

8、门起重机等等各种类型起重机。按照上部结构,主梁的结构又可分为单箱形主梁和双箱形主梁等等各种类型。由于本人设计的起重机结构为龙门式箱形结构,支腿型式为“”型。就不考虑其他类型起重机的结构,箱形梁式结构起重机结构是国内外起重机中应用最普遍的一种梁架结构型式。因为箱形梁式具有设计简单、制造工艺性好等优点,而这些有利条件对于尺寸规格多、生产批量较大的箱式起重机标准化系列产品来说,显得更加重要。由于小车轨道整正中铺设的箱形梁式结构至今仍然是我国成批生产的、最常用的、典型的一种结构。我主要设计的内容是龙门起重机的总体设计和金属结构设计。总体设计中有起重机的选型、设计参数、质量、等。金属结构包括:梁、直架、

9、力、强度、刚度、稳定性的校核和计算。起重机总体设计方案起重机选择类型为:箱形梁式龙门起重机,箱形梁式结构起重机主要由两根主梁和两根端梁组成。主梁是由上、下盖板和两块垂直腹板组成封闭的箱形截面的实体板梁结构。小车运行的轨道可以铺设在主梁上盖板的正中间,也可以设在靠里侧的垂直腹板的上方或介于上述两者之间的位置。因此,梁架中两根主梁的间距主要取决于起重小车的轨距,主要与起升机构的布置有关,梁架的两端梁间的距离取决于梁架的跨度大小。相比之下,箱型梁结构比衍架结构耐用度高、抗弯能力强、稳定性好、经济实用。是市场上最为实用的一种类型起重机,深受客户欢迎的理想的起重机。1起重机的总体设计主要内容包括以下方面

10、: 1.1门式起重机总体设计方案确定。111起重机的设计参数是指:起重量Q(t)、跨度L(m)起升高度H(m)起升速度(m/min)、和工作级别等。已知数据和计算 起重量:50 起升高度:4.2 跨度:5 起升速度:7.5 工作级别:级; 机构接电持续率:25%1.2龙们起重机的总体方案和基本参数确定各构件质量数据如下: 起重机总质量:;主梁:;支腿:(一根);下横梁:(一根);轨道:走台栏杆:=2067;电气均布质量:;吊具:。吊钩的选择:吊钩装置是起重机最重要的一个承载部件。它要求强度足够,工作安全可靠,转动灵活,不会发生突然破坏和钢丝绳脱槽等现象。吊钩装置有长型和短型两种。长型吊钩装置的

11、构造特点:吊钩装在横轴上,滑轮装在单独的心轴上。而短型吊钩装置的构造特点:吊钩横轴与滑轮心轴合而为一。长型吊钩装置的吊钩较短;而短型吊钩的装置的吊钩较长。我的设计选择长吊钩。滑轮组数选择:滑轮组是由定滑轮组和动滑轮组组成。由于动滑轮组与吊钩装在一起,称为吊钩组,所以我选择定滑轮组。定滑轮组的滑轮数依滑轮组倍率不同而不同,安装在起重小车架上。双梁箱形结构形式起重机提升50的滑轮组为双联滑轮组。吊钩组上起重机应用最广泛的取物装置,它由吊钩、吊钩螺母、横梁、动滑轮组、推力轴承和拉板等组成。起重机常用的轨道有三种:1)起重机钢轨道;2)铁路轨道;3)方钢轨道。本次设计我选用起重机钢轨道(即正轨)。详细

12、步骤如下:131主起升机构的设计:根据结构紧凑原则采用如图 所示的起升机构传动简图: 图 主起升机构传动简图 1电动机;2联轴器;3传动轴;4制动轮联轴器;5制动器;6减速器;7卷筒;8滑轮组;9吊钩组选择钢丝绳:采用双联滑轮组,取主起升机构滑轮组倍率如图 a、b所示,主起升机构承载绳索分支数采用图号为的50吊钩组代用。吊钩组质量,两滑轮间距。滑轮组采用滚动轴承,当时,滑轮组效率。钢丝绳承受最大拉力:选用钢丝绳标记如下: 确定滑轮尺寸:滑轮的许用最小直径: 式中,系数。选用标准滑轮。选用平衡滑轮。选择电动机:静功率计算:式中 机构的总效率,取=0.85。 电动机计算功率: 式中, 选则电动机的

13、型号如下: YZAR255M-8,工作制,=40%,次,。电动机轴端尺寸, 电动机的验算: 电动机的过载能力 式中 系数。; 电动机转矩允许过载倍率,。 机构中电动机个数。 ,过载演算通过13门架的结构选择型式:采用板梁结构。由于板梁结构制造方便,采用这种型式的门式起重机占多数。门架可制成双腿(全门架),门架主梁与支腿的选择是刚性连接的。门架采用双梁。门架结构是板梁式箱形结构。双梁箱形结构门架的支腿制成“”型。14门架的主要尺寸的确定:门架主要构件有主梁、支腿和下横梁,皆采用箱形结构。主梁截面如图 所示,其几何尺寸如下: 箱行主梁的截面以矩形截面。门式起重机的主梁高度:当采用两条刚性支腿时,取

14、,采用单箱型时,取。主梁几何特性:面积 ;静面矩 ;惯性矩 ; 截面模数 ;。对于支腿,腿高h由所要求的门架净空尺寸确定。刚性支腿的上部连接按箱形结构宽度(主梁高度)确定;柔性支腿的上、下部和刚性支腿的下部连接按门架下横梁宽度及具体结果确定。考虑到起重机沿大车轨道方向稳定性的要求,门式起重机的轮距,为主梁全长。141门式起重机的载荷及其组合:载荷: 作用在门式起重机上的载荷有:起重载荷、门架自重、电气设备及司机室等自重;、及风力等。142箱形结构的门架自重:箱形截面桥架自重 对于75以下的普通门式起重机,桥架(主梁)自重按下式估算: 带悬臂 =0.51283.32 无悬臂 =0.7式中 额定起

15、重量(); 桥架(主梁)全长(); 起升高度()。门架的计算载荷:支腿自重:双梁门架的支腿单位长度自重常取为主梁单位长度自重的0.20.4倍单主梁门架的支腿单位长度自重取为主梁的0.70.9倍。143惯性力(惯性载荷) 机构起、制动时产生的惯性力和冲击振动引起的惯性载荷的确定。 对于主动轮仅布置在一侧的门式起重机,设1轮为主动轮,2轮为从动轮,则大车制动惯性力为: =231.85式中 大车制动时,由桥架自重引起的水平惯性力; 、和等符号144大车运行偏斜侧向力 当门式起重机的运行速度与桥式起重机的运行速度相近时,可按下式计算侧向力: 式中 大车的最大轮压。 当门式起重机的运行速度较低时,侧向力

16、按照之腿由于运行阻力不同时求出 =表示主梁由于侧向力引起的弯矩。其中: =式中 和两支腿处的运行阻力,且; 和两支腿运行牵引力,且。145进行最大拉力验算: 146计算受拉单栓承载力 故 验算通过。 147载荷组合 由于各种载荷不可能同时作用在门架结构上,因此要根据门式起重机的使用情况来确定这些载荷的组合。 15 门式起重机的计算载荷组合通常考虑以下几种情况: 151对于主梁,考虑小车位于跨中或悬臂端,小车满载下降制动,同时大车平稳制动,风力平行大车轨道方向。称为计算情况II。 152对于支腿,分别考虑门架平面和支腿平面内的两种载荷组合:153支腿几何尺寸和几何特性:支腿总体尺寸 采用型支腿,

17、确定总体几何尺寸如下: 在门架的平面内,大车不动,小车位于跨端或悬端,小车满载下降制动,同时小车运行机构制动,风力沿小车轨道方向,称为计算情况II。表 门式起重机的计算载荷组合计 算 构 件主 梁支 腿载荷情况及组合IIIIIIIIII门架自重起升载荷小车惯性力大车惯性力大车偏斜侧向力门架支承横推力风力小车自重 注:表中桥架(主梁)自重;门架(包括主梁和支腿等)自重,在门架平面内,沿小车轨道方向的风力;在支腿平面内,沿大车轨道方向的风力。其余符号同前述。 在支腿平面内,小车位于跨度端或悬臂端,小车满载下降制动,同时大车平稳制动,风力平行大车轨道。称为计算情况。154对于主梁和支腿,还应考虑非工

18、作状态下的载荷组合,这时大车和小车皆不动,空载。仅作用有非工作状态的最大风载荷,称为技术情况。对于每种计算情况,由于其载荷组合出现的可能性不同,所以在设计计算时,对金属结构的许用应力值也各不相同。2起重机金属结构设计:箱型结构形式,支腿型式为“”型。主要参数及校核计算如下:211主梁危险载面的强度校核计算: 主梁的内力计算:计算主梁的内力时,将门架当作平面静定分析 212正应力的校核验算: 根据公式计算的垂直弯矩同时作用在主梁上,并考虑约束弯曲和约束扭转的影响,主梁再面上的正应力可按下式叠加:主梁跨中:=主梁支承载面:=式中 、主梁跨中的最大垂直弯矩和水平弯矩; 、主梁支承载面的最大垂直弯矩和

19、水平弯矩; 、主梁跨中和支承载面对轴的载面摸数; 主梁对轴的载面摸数。 强度许用应力为: 确定应力循环特性钢的强度许用应力为: 式中 为载荷组合的安全系数。 213剪应力的校核验算: 箱形载面主梁支承载面处的剪力在腹板上引起的剪应力按下式计算:=式中 主梁载面的一部分对中性轴的静矩; 主梁载面对轴的惯性矩; 、主梁的主、副腹板的厚度。 在水平载荷作用下,盖板上的剪应力:=式中 支承处的水平剪力; 主梁载面的一部分对轴的静矩; 主梁载面对轴的惯性矩; 上、下盖板厚度。主梁受扭的影响。则按纯扭转计算,计算式为:主腹板上 =副腹板上 =盖板上 =式中 作用与主梁支承载面的扭矩; 主梁封闭载面的轮廓面

20、积,。 在主梁载面上,各种载荷在同一点引起的剪应力予叠加。 主梁扭转剪应力:对于单主梁箱形门式起重机,其主梁截面除承受自由弯曲应力外,还承受约束弯曲应力、约束扭转正应力(以增大15%的自由弯曲应力计入)和剪应力。此外。主梁截面还承受纯扭转剪应力,县验算如下: 214支腿危险载面的强度校核验算: 对于单主梁箱形结构门架的支腿应分别选取几个载面进行强度计算: 强度验算式为:式中 门架平面,支腿验算载面的最大弯矩; 支腿平面,支腿验算载面的最大弯矩; 支腿平面,支腿验算载面的轴向力; 、验算载面对轴和轴的载面模数; 验算载面的面积。 根据静强度和疲劳强度条件计算截面需要的面积: 由计算结构知,杆件应

21、根据疲劳强度条件确定截面积。杆件需要的最小截面积为20732.55。215下横梁的截面尺寸及几何特性强度验算: 将各种载荷作用在门架上引起的下横梁的弯矩叠加,然后按下式验算其强度,即弯曲应力:=式中 作用在下横梁载面的总弯矩; 验算载面对轴的载面模数。 主梁支腿抗弯刚度比:系数: =式中 主梁绕x轴惯性矩; =支腿折算惯性矩; h=9.8m, 216支腿与下横梁的内力校核计算:由主梁均布自重产生的内力。有悬臂时的侧推力为: =为了安全起见,现将有悬臂门架当作无悬臂门架计算,即 弯矩217支腿平面内的支腿内力计算:由垂直载荷引起的支腿内力在垂直载荷作用下引起的支腿内力为支反力: 218箱型梁的约

22、束弯曲校核计算: 根据理论分析和实验验证,在薄壁箱型梁的角点上,最大约束弯曲正应力可近似取为: 式中 自由弯曲正应力; 考虑约束弯曲而使应力增大的系数; B翼缘板宽度。初选箱形截面腹板厚度 8.82 刚度是控制条件。 图 薄壁箱形梁约束弯曲时截面正应力分布 图 腹板受轮压局部挤压计算219轮压产生的局部压应力校核计算:由于门架平面内A支座处轮压最大,其值为=475818.8,若在是设计时,能使得A支座侧的两个车轮轮压接近相等,则:当起重机小车的轮压直接作用在梁的腹板上时(图 ),腹板边缘产生的局部压应力为:= 式中 局部压应力; P集中载荷(N); 板厚(mm); 集中载荷分布长度,可按下式计

23、算: =50+=70式中 集中载荷作用长度,对车轮取; -自构件顶面(无轨时)或轨顶(有轨时)至板计算高度上边缘的距离(mm). 当起重机小车的轮压直接作用在梁的上盖板时,局部弯曲应力为:普通正轨布置在两腹板中间的上盖板上,由轮压作用而使上盖板产生局部弯曲,此时上盖板应按被两腹板和相邻两筋板分隔成的矩形板计算,如图 所示。箱型梁上盖板是超静定薄板。它支承在梁的腹板和横向加筋板上。这种薄板的计算简图较复杂,再加上在小车轮压作用下,起重机箱型梁的盖板连同轨道一起承受局部弯曲,使其计算简图更加复杂。为了简化计算,特作如下假设: 1)把上盖板看作为是腹板和横向加筋板约束的自由支承的薄板;2)轨道视为一

24、根中部受集中载荷的梁;3)根据薄板受集中载荷作用来计算盖板挠度;4)计算应力时,假设轨道和盖板间仅在边长为a和b矩形面积上接触。此时, (cm),为轨道宽度,为轨道高度。 图 上盖板的局部弯曲计算简图对于正轨箱型梁,由于集中载荷的作用点在板的中心或偏一距离,故应采用板壳理论计算。根据板壳理论,作用在受载面积中心(图)弯距: 式中 在此处 I-轨道的惯性矩; 上盖板的厚度; 系数,取决于之间值,见表 。 表 系数 1.00.1270.1380.1480.1620.1710.1770.180 轨道中心线至腹板的距离,正轨时,; = =318.10 =3 =203

25、.5 ; v_波桑比; ,系数,其值取决于和的值(参见表 ); 上盖板上的折算应力按下式求得: = 式中 由垂直弯矩引起的正应力, ,应带各自的正负号代入。 表 对于矩形板的因子和的值 .0.400.5000.400.50 0.52.7922.3521.9451.6861.5990.557-0.179-0.647-0.852-0.900.91.01.82.03.02.8612.9042.9332.9522.9662.9822.9002.9552.9772.9993.0003.0002.5452.6772.7682

26、.93228792.9362.9662.9822.9002.9553.0003.0002.2272.4332.5842.6942.7662.8802.9362.9662.9822.9003.0003.0002.0112.2592.4482.5912.6982.8362.9122.9532.9752.9872.9993.0001.9362.1982.3992.5332.6692.8202.9032.9482.9722.9852.9993.0000.6770.7580.8140.8560.8870.9310.9580.9750.9850.9910.9991.0000.0530.2400.3910.

27、4560.6110.7560.8490.9080.9450.9680.9981.000-0.439-0.229-0.0310.1480.3040.5510.7190.8280.8970.9390.9961.000-0.701-0.514-0.310-0.108-0.0800.3930.6160.7640.8580.9150.9951.000-0.779-0.605-0.4.04-0.1980.0000.3350.5780.7400.8340.9060.9941.000210主梁的刚度校核计算: 梁除了满足强度条件外,还需具有一定的刚度(限制变形)才能满足使用要求。用于起重机的梁只验算由有效载荷

28、(移动载荷)产生的静挠度(不计动力系数),梁的这种变形是弹性变形,外载荷消失后梁能复原,绝对不允许残余(永久)变形。1)静刚度当两个不相等的移动集中载荷对称作用于梁的跨度中央时(图),其最大静挠度由下式确定: 对于图 所示情况,梁的最大静挠度: = 允许静挠度值分别推荐如下:2) 门式起重机的跨中挠度 式中 L起重机的跨度。3) 门式起重机的悬臂挠度 =12930式中 _悬臂长度。4) 门式起重机跨中水平位移 =根据刚度条件,型钢梁需要的截面惯性矩为: 式中 梁的跨度(); 型钢梁的许用挠度,; 电动葫芦在额定起重量时的总轮压(不计动力系数)。按下式计算: 其中,额定起重量, 电动葫芦自重。

29、5) 动刚度在起重机小车卸载时,主梁在垂直方向将产生衰减振动,这种振动对结构强度的影响不大,但对于起重机的正常使用以及司机的操作田间却是不利的,缓慢的衰减过程影响到起重机的生产率,因此,从现代化生产的要求出发(特别是对高速运行的起重机以及要求所吊运件能精确安装的起重机),起重机应保证一定的动刚度。 图 梁的刚度计算 对于一般使用的起重机,不必验算起动刚度。对于工艺上及生产率上有较高要求的桥式起重机,应验算动刚度,要求小车位于跨中时的满载自振频率f不应低于2HZ。可按下列公式验算满载自振频率: =0.6=1367.1 式中 _满载自振频率,(HZ); 主梁结构在跨中的刚度系数,其物理意义为使主梁

30、在跨中处产生单位垂直静挠度所需的集中力的大小;按表 计算;主梁结构在跨中的换算集中质量与小车质量之和(对于双梁结构,如果小车质量按整台小车计算,则近似等于一根主梁结构的质量)();按表 计算;与额定起升载荷的质量之比,即;与钢丝绳绕组的刚度系数之比,即。钢丝绳绕组的刚度系数(其物理意义为使钢丝绳绕组在荷重悬挂处产生单位静伸长所需的力)可按下式计算: =式中 钢丝绳绕组的刚度系数; 绕组的分支数; 所用的钢丝绳的纵向弹性模数,与钢丝绳结构有关,一般取值1.0; 一根钢丝绳的钢丝截面积; _钢丝绳绕组在相当于额定起升高度时的实际平均下放长度,可近似取为卷筒中心与上部固定滑轮中心之半处至吊滑轮中心的

31、实际平均下放长度(cm),见图 。 211稳定性校核计算: 对于双梁箱形截面桥式和门式起重机以及单主梁门式起重机,一般不进行整体稳定性验算,但应进行腹板和盖板的局部稳定性验算。1) 桥式类型起重机梁的腹板可能在下列几种应力作用下丧失稳定性:2) 弯曲剪应力:在剪力作用下,梁的腹板会在45度方向受压而在斜向失去局部稳定性(图);3) 弯曲正(压)应力。这时,梁的腹板和盖板的受压区有可能在梁长方向失去局部稳定性(图);4) 弯曲正(压)应力和轴向压应力(如门式起重机的支腿);5) 作用在腹板上缘的载荷(如集中轮压等)产生压应力(如偏轨桥式和门式起重机),这时,腹板会因挤压应力在竖向失去稳定(图和图

32、)。金属结构也可能在以上几种应力共同作用在梁的腹板上时丧失局部稳定。这时,腹板随着作用于其上的载荷性质不同翘曲各种曲面(图)。 图 腹板局部稳定的计算 。为了保证梁的腹板的局部稳定性,通常用加劲板或加劲杆来加固腹板,这样要比增加腹板的厚度经济些。加固的方式如下:1) 在箱形截面梁整个高度上设置横向加劲板(图);2) 对于正轨箱形结构桥式起重机,除设置横向加劲板外,在箱形截面腹板受压区域设置短横向加劲板(图);3) 在跨度较大的桥式和门式起重机中。梁的高度比较大,这时,除设置横向加劲板外,常常在腹板的受压区设置一条纵向加劲线,如果需要,例如从工艺方面限制腹板旁弯和波浪形,在腹板受压区也设置纵向加

33、劲杆(图)。1 12箱形截面梁腹板加劲的设计原则:1) 通常沿腹板全高设置横向加劲板(图和)加固腹板。当时,横向加劲板之间的距离不应大于2h或3m;当时,不应大于2.5h。在跨度较大时横向加劲板的间距,在支座附近较小些,而在跨中较大些。考虑到实际生产中,为了限制腹板波浪度,一般取间距m。2)如果腹板仅在剪应力作用下;当(对于低碳钢)或(对于低合金钢)时,可不必设置横向加劲板,但是为了增加截面的扭转刚度,提高梁的整体稳定性,一般仍设置横向加劲板。3)如果腹板仅在正应力作用下,当(对于低碳钢)或(对于低合金钢)时,可不必加固。4) 对于高度较大的梁,必须在腹板受压区设置纵向加劲条(图的3),且设置

34、在离受压翼缘板(0.20.25)h处(图 );当(对于低碳钢)或(对于低合金钢)时,一般只加一根纵向加劲条,如果因梁高很大,而必须用两根纵向加劲条来加固腹板时,则第一根纵向加劲条离受压边缘距离为(0.150.20)h ,第二根离受压边缘距离为(0.350.40)h。纵向加劲条截面必须的惯性矩见表3-6。 图 箱形主梁加劲板的设置 5)若腹板仅仅只用横向劲板加固时,对于箱形截面梁,横向劲板宽度取为等于两腹板间距b,若梁宽B较大,横向加劲板中部可开孔,但应保证mm,加劲板厚度不应小于。6) 在有纵向加劲条的情况下,横向劲板的惯性矩为: =3=117.32纵向加劲条所需的惯性矩根据比值确定7) 当梁

35、的上翼缘作用有集中载荷(例如正轨箱形结构桥式起重机)时,一般在腹板上须设置短横向加劲板(图 ),其高度或。如果腹板上有纵向加劲条,则短横向加劲板应与纵向加劲条相连,短横向加劲板的间距。 213腹板局部稳定性的校核验算: 对于正轨箱形梁,腹板同时受弯曲正应力,剪应力和集中轮压作用在腹板上缘产生的压应力。 根据板的弹性稳定理论,结合工程实际,可将工字型截面的腹板看作是由上下翼缘板支承着的弹性嵌固板,但有水平位移的可能。弹性嵌固起提高腹板屈曲系数的作用,能水平位移,有降低抗屈曲能力的作用,所以可以偏安全地认为腹板的上下支承是只能转动的简支支承,不考虑其嵌固影响。在有较强翼缘板的情况下,工字型截面的腹

36、板弹性嵌固支承影响系数可以取x=1.5。薄板在各种载荷情况和各种支承情况下的局部稳定的临界屈曲应力公式可写成如下通式: 、 式中 、分别为x方向正应力、剪切应力和y方向局部压应力作用下的临界屈曲应力; x板边支承情况影响系数,也称嵌固系数,两非承载边简支支承时取1,弹性嵌固时取1.21.5,详见表 ; 、分别为简支支承板在受x方向正应力、剪应力和y方向局部应力时的屈曲系数,其值参见表 ; 板屈曲的欧拉应力,可按下式计算: =163.31 式中 D=板的单位宽度弯曲刚度; 板厚; _垂直于正应力方向的板宽,验算腹板时为腹板的计算高度; a_垂直于局部压应力方向的板长,验算腹板时为横向加劲板间的距

37、离; E弹性模数; 波桑比。板在压应力剪应力和局部压应力共同作用时的等效临界复合应力可按下式、 =式中,为板边两端应力之比,为板边最大应力,、各带自己的正负符号;其它符号同前。 当临界应力超过0.75时,按式( )求得折减临界复合应力: 式中 材料的屈服点。 表 示出局部区格板的屈曲系数。 薄板局部稳定性的验算是以屈曲临界应力为极限应力的。只要作用在板上的载荷应力(在非均布应力时取最大的应力值)小于极限应力(或许用应力),板是稳定的,其验算公式如下: 或=312.1 或= 或式中 n安全系数,其值与强度安全系数一致,按载荷组合分别取1.5、1.33、和1.15; 和分别为正应力、剪应力和局部压

38、应力作用下的许用屈曲临界应力。 当板受压应力,剪应力和局部压应力同时作用的等效复合应力按式( )计算时,板的屈曲安全系数可以取得小一些,一般可以减小百分之十。 214加肋板的稳定性校核计算: 在工程设计中,为了满足公式( ),有时不得不增加板厚,这常常要增加钢材用量。而在板的受压部位加上几根加劲条或加强肋则可以提高板的抗屈曲能力,而且相比之下要经济些。刚性的加强肋(加劲条)能起到支承作用,将板分割为若干区格,改变了板在计算稳定性时的宽度b和a的值。而且,区格板的屈服系数与 有关,屈曲临界应力与宽(b)平方成反比。但要注意的是刚性加强肋要有足够的弯曲刚度,要能起到支承板的作用。加强肋的刚度以 的

39、乘积表示。 是加强肋绕被加强板板厚中心线的面积惯性矩。加强肋的弯曲刚度和该板的弯曲刚度比称为加强肋的刚度比,常以 表示,即 = 式中 b, 为板的宽度和厚度。对于刚性加强肋而言,有最小刚度比 ,亦即当刚性加强肋使区格板的屈曲临界应力小于(最多是等于)这块加肋整板的屈曲临界应力时,此加强肋的刚度比即为最小刚度比。这时,板的屈曲只能限于区格板内,也就是说区格板的屈曲将先于整板。当加强板刚度不够时,加肋板仍以整板屈曲模态失稳。此时的加强肋称为柔性加强肋。带柔性肋板的屈曲系数可按公式计算。 在求得刚性肋的最小刚度后,即可计算刚性肋的面积惯性矩。所有刚性肋的面积惯性矩()必须大于此值。 当桥式类型起重机

40、主梁腹板被纵向肋分格为上,下两区格,并受有y 方向的局部压力时,则上区格板(图 )的局压屈曲系数 按表 计算 ,而下区格板则按或。此时上区格板的验算公式应为改写的式( ),即 下区格板的局部验算公式则为: 0.4式中, 和分别为上区格板和下区格板的屈曲临界应力。 对于普通桥式起重机,由于梁的受压翼缘板属于均匀受压情况,只要合理选取板宽B和厚度 的比值(表 ),则勿需用纵向加劲条加固梁的受压翼缘。根据满足局部稳定性条件,图3-11列出了受压翼缘尺寸比例关系。对于偏轨宽翼缘桥式类型起重机,其主梁截面较宽,而翼缘板厚 相对较薄(b-两腹板间距; -上翼缘板厚度),因此受压翼缘板必须根据局部稳定性布置

41、纵向加劲条。当60(50) 时(括号内数字用于低合金钢),应设置一条纵向加劲条,纵向加劲条的惯性矩: 式中 -系数,按表3-11选用。表3-10 受压翼缘板的宽厚比 板的长边支承特性 不大于 钢 低合金钢一边简支,一边自由 15 12一边嵌固,一边自由 30 25 两边简支 60 50 两边嵌固 70 60 当时,应设置两条纵向加劲条,纵向加劲条的惯性矩: 式中 系数; b两腹板间距。图 受局部压力的区格板 图 受压翼缘的尺寸比例215受扭构件的校核计算1)自由扭转和约束扭转的概念起重机金属结构中的梁为非圆截面直杆,而且是开口薄壁(工字形截面等)后闭口薄壁(箱形截面)结构。非圆截面直杆受扭时,

42、其横截面不再保持平面而产生翘曲现象。如果所有的截面都自由翘曲,则在截面上不会产生正应力,这称为自由扭转,这时,杆件所有截面的翘曲量相同。因此,在横截面内只产生与外扭转相平衡的剪力。这种情况只有当等截面直杆的两端作用大小相等而方向相反的力偶,且无任何约束时才会产生。 图 a为工字形截面杆件两自由端受两个力偶作用而产生自由扭转,图 a为变形后的情况,平行于杆轴的纵向直线(例如翼缘)仍保持直线,截面ABCD已有翘曲不再成平面,由于各截面均能自由翘曲,且翘曲量相同,故纵向纤维长度不改变,截面上就不会产生正应力。 表 系数 值1.82.02.83.00.050.1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论