




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、基于GLM (广义线性模型)的数据分析SAS里的GLM应用在实际中比较广泛,对数据的分析具有比较强的普适 性。趋势面回归分析(Trend Analysis)是以多元回归分析为理论基础的一 种预测 与统计技术。它用空间坐标法进行多项式回归,从中估计出最佳的 回归模型,因 此也被称为趋势面分析,当不知道手中的数据呈线性还是非 线性相关时,可以采用趋势面数据分析方法,以便找出拟合数据的最佳统计 预测模型。本文运用GLM对一定的数据进行GLM分析。一、数据与要求此处选取15名吧不同程度的烟民的每日饮酒(啤酒)量与心电图指标(zb)的对应数据。然后设法建立zb与日抽烟量(X) /支和日饮酒量(y) /升
2、之间的关系。序号组另IJ日抽烟量(x) /支日饮酒量(y) /升心电图指标/ 、113010280212511260313513330414014400514514410622012270721811210822512280922513300102231329011340144101234515420133481642514350184501535519470二、运用GLM过程进行趋势面分析1 .趋势分析的GLM程序data beer;input obsn x y zb; cards;01 30 10 28002 25 11 26003 35 13 33004 40 14 40005 45 1
3、441006 20 12 27007 18 11 21008 25 12 28009 25 13 30010 23 13 29011 40 1441012 45 15 42013 48 16 42514 50 18 45015 55 19 470 proc glm; model zb=x y/p;proc glm;model zb=x y x*x x*y y*y/p;proc glm;model zb=x y x*x*x x*x*y x*y*y y*y*y/p;proc glm;model zb=x y x*x*x x*x*y x*y*y y*y*y x*x*x*x x*x*x*y x*x*y
4、*y x*y*y*y y*y*y*y/p; run;2.四种分析模型结果(1)一阶趋势模型Dependent Variable: zb源变量自由度平方和均值3Sum ofSourceDFSquaresMean SquareF ValuePr FModel90615.2099345307.60497127.19FX189541.5655889541.56558251.36 F114652.2435114652.2435141.13x |t|Intercept64.0499938033.065399191.940.07665.383855650.839475676.41 F18666.167161
5、07.75 FX189541.5655889541.56558516.86 FX1965.2913631965.29136315.570.0426y1127.4395437127.43954370.740.4133X*X143.662297243.66229720.250.6277x*y1242.0343234242.03432341.400.2675y*y149.843031649.84303160.290.6047StandardParameterEstimateErrort ValuePr|t|Intercept-262.7664793109.1074817-2.410.0394X16.
6、06997796.80786202.360.0426y23.539132727.44498670.860.4133x*x0.06387730.12723830.500.6277x*y-1.16510160.9857119-1.180.2675y*y1.16733622.17629820.540.60476270.0000000255.125602414.8743976Observation12345Observed280.0000000260.0000000330.0000000400.0000000410.0000000Predicted279.4168700258.6814596351.0
7、997183388.1251282414.0657505Residual0.58313001.3185404-21.099718311.8748718-4.06575057210.0000000216.6773768-6.677376868280.0000000300.00000009290.000000010410.000000011420.000000012425.000000013450.00000001415470.0000000279.9417834303.5367795295.5572467388.1251282419.0280585436.4318573453.755470646
8、5.43176990.0582166-3.5367795-5.557246721.87487180.9719415-11.4318573-3.75547064.5682301-0.0000001559.164195-0.000000-0.3542052.694808Dependent Variable: zb 源变量自由度平方和均值F值概率值SourceDFSum ofSquaresMean SquareF Value Pr FModel93393.4641415565.5773683.21 FX189541.5655889541.56558478.66 FX11643.3470811643.
9、3470818.780.0180197.474017197.4740171.060.3343y10.56x*x*x1105.516422105.5164220.4741x*x*y1113.710330113.7103300.610.4580x*y*y1146.610010146.6100100.780.4018y*y*y1173.116161173.1161610.930.3642StandardParameterEstimateError t ValuePr|t|Intercept-166.007458982.37772231-2.020.0786X11.13825983.757952332
10、.960.0180y15.778434015.357039051.030.3343x*x*x-0.01541320.02052250-0.750.4741x*x*y0.12031870.154323330.780.4580x*y*y-0.34167860.38595313-0.890.4018y*y*y0.31348940.325876140.960.364215470.0000000463.53108336.4689167ObservationObservedPredictedResidual1280.0000000281.0906363-1.09063632260.0000000256.0
11、4837833.95162173330.0000000351.8935219-21.89352194400.0000000390.57078969.42921045410.0000000409.23096520.76903486270.0000000257.998349012.00165107210.0000000220.0483966-10.04839668280.0000000275.01603684.98396329300.0000000299.47099730.529002710290.0000000295.8228899-5.822889911410.0000000390.57078
12、9619.429210412420.0000000420.5758580-0.575858013425.0000000437.4437284-12.443728414450.0000000455.6875798-5.6875798-0.0000001496.535862-0.000000-0.3575452.686333Sum of ResidualsSum of Squared ResidualsSum of Squared Residuals - Error SSFirst Order AutocorrelationDurbin-Watson D4)四阶趋势模型Dependent Vari
13、able: zb 源变量自由度平方和均值F值概率值Sum ofSourceDFSquaresMean SquareF ValuePr FModel1194480.319198589.1199362.900.0029Error3409.68081136.56027Corrected Total1494890.00000R-SquareCoeff VarRoot MSEzb Mean0.9956833.367695 11.68590347.0000SourceDFType I SSMean SquareF ValuePr FX189541.5655889541.56558655.690.0001y
14、11073.644351073.644357.860.0676x*x*x12078.776642078.7766415.220.0299x*x*y1508.85526508.855263.730.1491x*y*y117.5061417.506140.130.7440y*y*y1173.11616173.116161.270.3421X*X*X*X152.9156652.915660.390.5777x*x*x*y1193.81980193.819801.420.3192x*x*y*y1452.42798452.427983.310.1663X*y*y*y140.3287940.328790.
15、300.6246y*y*y*y1347.36281347.362812.540.2090SourceDFType III SSMean SquareF ValuePr FX153.834735453.83473540.390.5746y118.442245818.44224580.140.7376x*x*x1707.3985134707.39851345.180.1073x*x*y1688.7276032688.72760325.040.1104x*y*y1669.2155979669.21559794.900.1137y*y*y1614.9897506614.98975064.500.123
16、9x*x*x*x173.525495773.52549570.540.5162x*x*x*y121.572098721.57209870.160.7176x*x*y*y1150.8940383150.89403831.100.37040.2581x*y*y*y1264.7516451264.75164511.94y*y*y*y1347.3628138347.36281382.540.2090StandardParameterEstimateErrort ValuePr |t|Intercept-748.5352475602.9093096-1.240.3026X21.526850134.285
17、57060.630.5746y63.4532525172.66693160.370.7376x*x*x1.11290830.48897822.280.1073x*x*y-7.84664423.4939960-2.250.1104x*y*y17.69195997.99199322.210.1137y*y*y-12.81731806.0398396-2.120.1239X*X*X*X-0.00528950.0072088-0.730.5162x*x*x*y-0.03396280.0854515-0.400.7176x*x*y*y0.42181270.40127851.050.3704X*y*y*y
18、-1.09527330.7866207-1.390.2581y*y*y*y0.84110790.52737831.590.2090Observation1234567891011121314Observed280.0000000260.0000000330.0000000400.0000000410.0000000270.0000000210.0000000280.0000000300.0000000290.0000000410.0000000420.0000000425.0000000450.0000000Predicted280.6428697254.9148649336.2353148399.8451524409.0029100265.5623644212.0079405287.4716063292.6701245295.8090433399.8451524428.1747562422.5228478450.5733972Residual-0.64286975.0851351-6.23531480.15484760.99709004.4376356-2.0079405-7.47160637.3298755-5.80
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年宠物心理干预面试题库
- 2025年财务岗位面试问题及答案集
- 2025年C1科目四理论考试预测题
- 2025年安全生产安全责任考试题集
- 税务服务考试题库及答案
- 水利水安考试题库及答案
- 2025年精准营销大数据在电商领域的应用与挑战报告
- 2025年城市新区规划调整对公共交通系统风险分析报告
- 师承中医师资格证考试题库及答案
- 生产管理师证考试题库及答案
- 实验室家具生产、安装进度计划表
- 干细胞健康推广策划方案
- 托管老师培训课件
- 管道改造管道吹扫安全方案
- 智能制造生产线课程设计
- 2024年中国东方航空集团招聘笔试参考题库含答案解析
- 煤矿与环境保护
- 竞价采购文件示范文本
- 领导干部任前谈话记录表
- 光对绿豆发芽影响试验报告
- 土力学与地基基础(课件)
评论
0/150
提交评论