《zm微弱信号检测》ppt课件_第1页
《zm微弱信号检测》ppt课件_第2页
《zm微弱信号检测》ppt课件_第3页
《zm微弱信号检测》ppt课件_第4页
《zm微弱信号检测》ppt课件_第5页
已阅读5页,还剩102页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、4.3 微弱信号检测微弱信号检测一一. .微弱信号检测定义微弱信号检测定义 前面我们讨论了噪声的根本概念,以及降低噪声的一些根本方法,如采用低噪声放大器不会对被探测的辐射信号产生噪声前面我们讨论了噪声的根本概念,以及降低噪声的一些根本方法,如采用低噪声放大器不会对被探测的辐射信号产生噪声“污染;但假设光辐射信号非常微弱或者背景噪声污染;但假设光辐射信号非常微弱或者背景噪声或干扰的影响很大,呵斥经过光电检测放大电路后进入信号处置系统输入端的信噪比已很糟糕,甚至信号深埋于噪声之中,这时要想将信号检测出来,必需根据信号和噪声的不同或干扰的影响很大,呵斥经过光电检测放大电路后进入信号处置系统输入端的信

2、噪比已很糟糕,甚至信号深埋于噪声之中,这时要想将信号检测出来,必需根据信号和噪声的不同特点,借助一些特殊的微弱信号检测方法将信号与噪声分别,将信号从噪声中提取出来。特点,借助一些特殊的微弱信号检测方法将信号与噪声分别,将信号从噪声中提取出来。 “信号电压幅值为线性迭加有规律的周期信号而信号电压幅值为线性迭加有规律的周期信号而“噪声功率为平方相加无规律的随机信号。噪声功率为平方相加无规律的随机信号。mSNIR 低噪声放大器窄带通滤波器+低噪声放大器带阻滤波器 (f0)比较器计数正弦波加噪声(f0)噪声双路消噪原理框图双路消噪原理框图只能用来检测微弱的正弦波信号能否存在,并不能复现波形。 一、有关

3、带宽的一些定义一、有关带宽的一些定义 )()(02 0 2fAdffAfn)(02fAfn1. 等效噪声带宽等效噪声带宽 2. 放大器的通频带放大器的通频带 0.73. 噪声经过放大器的情况噪声经过放大器的情况 )()()(20fSfAfSi)( )( )()()(022 0 2 0 0 0 20fAfSdffASdffAfSdffSvniiinkTRfSi4)(那么那么 nnffKTRAv)(40220nnffkTRAv)(40220通常知对白噪声,可方便计算输出对白噪声,可方便计算输出端噪声电压的均方值。端噪声电压的均方值。 nnffKTRAv)(402204. 等效噪声带宽与系统的等效噪

4、声带宽与系统的3dB带宽的关系带宽的关系例:例:RC低通滤波网络低通滤波网络 +- - -RCviv0RC低通网络低通网络随着级数的添加,随着级数的添加,fn和和f的比值越来越接近于的比值越来越接近于1。2ffn22. 1ffn时间常数一样的两级时间常数一样的两级RC网络网络iiooNSNSSNIR/输入信噪比输出信噪比二、信噪比改善二、信噪比改善Eni是等效输入宽带白噪声,其功率谱密度是等效输入宽带白噪声,其功率谱密度为常数,噪声带宽为为常数,噪声带宽为fininnifE2下面导出白噪声情况下下面导出白噪声情况下SNIRSNIR的表示式:的表示式:信号处置系统信号处置系统VsiEniVsoE

5、sodffKEvno)(2 0 2sisovVVfK)(dffKfVVfVdffKVEVEVSNIRvinsisoinsivsonisinoso)(/)(/2 0 2222 0 22222输入信噪比输出信噪比nvvffKdffK)()(022ninffSNIRdffKfVVfVdffKVEVEVSNIRvinsisoinsivsonisinoso)(/)(/2 0 2222 0 22222输入信噪比输出信噪比22sisoVV是系统的功率增益,我们可以取中频区最大值,即是系统的功率增益,我们可以取中频区最大值,即所以:所以:)(02220fKVVvsisdffKffKSNIRvinv)()(20

6、2 故可得:故可得:和系统的和系统的3dB带宽带宽相等吗?相等吗?100ninffSNIRiiooNSNSSNIR/输入信噪比输出信噪比1 . 022nisiEV例:窄带滤波法例:窄带滤波法 由图看出:运用了窄由图看出:运用了窄带通滤波器后,那么带通滤波器后,那么 1划斜线的矩形面积信号主峰下的面积输出信噪比假设假设B选得很窄,那么输出信噪选得很窄,那么输出信噪比还能更大一些。比还能更大一些。窄带通滤波器的实现方式很多,常见的有双窄带通滤波器的实现方式很多,常见的有双T选频,选频,LC调谐,调谐,晶体窄带滤波器等,但这种方法不能检测深埋在噪声中的信晶体窄带滤波器等,但这种方法不能检测深埋在噪声

7、中的信号,通常它只用在对噪声特性要求不很高的场所。更好的方号,通常它只用在对噪声特性要求不很高的场所。更好的方法是用锁定放大器和取样积分器。法是用锁定放大器和取样积分器。 Rtitp)()(2 l在一个周期内,在一个周期内,R R耗费的能量耗费的能量 222220000d)(d)(TTTTttiRttpE 22200d)(1TTttvRE或或l平均功率可表示为平均功率可表示为 222000d)(1TTttiRTP 222000d)(11TTttvRTP或或设设i(t)为流过电阻为流过电阻R的电流,的电流,v(t)为为R 上的电压上的电压 R)(ti+ + )(tvl瞬时功率为瞬时功率为讨论上述

8、两个式子,只能够出现两种情况:讨论上述两个式子,只能够出现两种情况:( (有限值有限值) ) ( (有限值有限值) ) 满足满足式的称为能量信号,满足式的称为能量信号,满足式称功率信号。式称功率信号。 E00 P P0E定义:普通说来,能量总是与某一物理量的平方成正比。定义:普通说来,能量总是与某一物理量的平方成正比。令令R = 1 ,那么在整个时间域内,实信号,那么在整个时间域内,实信号f(t)的的 2220000d)(1limTTTttfTP平均功率平均功率 222000d)(limTTTttfE能量能量)()(22tftfdttfETTT222lim )(dttfTPTTT222lim

9、)(1f1(t)与与f2(t)是能量有限信号是能量有限信号f1(t)与与f2(t)为实函数为实函数f1(t)与与f2(t)为复函数为复函数f1(t)与与f2(t)是功率有限信号是功率有限信号f1(t)与与f2(t)为实函数为实函数f1(t)与与f2(t)为复函数为复函数分如下几种情况讨论:分如下几种情况讨论:(1) f1(t)与f2(t)为实函数: l相互关函数相互关函数ttftfRd)()()(2112 ttftfd)()(21 + + ttftfRd)()()(2121 ttftfd)()(21 + + 可以证明:可以证明: )()(2112 RR时时,自自相相关关函函数数为为当当)()(

10、)(21tftftf ttftfRd)()()( ttftfd)()( + + )()( RR的偶函数的偶函数镜像对称镜像对称l l相互关函数:相互关函数: ttftfRd)()()(*2112 ttftfd)()(*21 + + ttftfRd)()()(2*121 ttftfd)()(2*1 + + ttftfRd)()()(* ttftfd)()(* + + 同时具有性质:同时具有性质: )()(*2112 RR)()(* RR(2) f1(t)与与f2(t)为复函数为复函数: l自相关函数:自相关函数: l相互关函数:相互关函数: 222112d)()(1lim)(TTTttftfTR

11、 221221d)()(1lim)(TTTttftfTR l自相关函数:自相关函数: 22d)()(1lim)(TTTttftfTR (1) f1(t)与f2(t)为实函数: )()(yxxyRR)()(xxxxRRl相互关函数:相互关函数: 22*2112d)()(1lim)(TTTttftfTR 221*221d)()(1lim)(TTTttftfTR l自相关函数:自相关函数: 22*d)()(1lim)(TTTttftfTR (2) f1(t)与与f2(t)为复函数为复函数: )()(*yxxyRR)()(*xxxxRR3. 相互关函数特点相互关函数特点4. 自相关函数特点自相关函数特

12、点)()(xxxSRFdeSSFRjxxxx)(21)()( 1式中式中Sx是是xt的功率谱密度函数。的功率谱密度函数。 )sin()(0+tAtx020022T2 lim cos2)(sin)sin(1)(TAdtttATRTTxx+)(xS )( 21)(deRjxx+其它频率 )(00oSx+sinsin221221)(21)(00000 jjeejdedeSRjjjjxxx1. 自相关检测自相关检测自相关检测的原理框图自相关检测的原理框图 lRsn()、Rns()分别表示信号和噪声的相互关函数,由于信号与噪声不分别表示信号和噪声的相互关函数,由于信号与噪声不相关,故几乎为零;相关,故几

13、乎为零;l而而Rnn()代表噪声的自相关函数,随着积分时间的适当延伸,代表噪声的自相关函数,随着积分时间的适当延伸,Rnn()也也很快趋于零;很快趋于零;l因此,经过不太长的时间积分,积分器之输出中只会有一项因此,经过不太长的时间积分,积分器之输出中只会有一项Rss(),故,故:l这样,便可顺利地将淹没在噪声中的信号检测出来。这样,便可顺利地将淹没在噪声中的信号检测出来。 )()(ssxxRR)()()()()()()()(1)()(1)()(2T 2 lim 2T 2 lim nnnssnssiiiiTTTTxxRRRRdttntStntSTdttxtxTRR+tEtSi1cos)(12co

14、s2)(TERsslRss()为信号的自相关函数,它与信号同频的余弦函数,为信号的自相关函数,它与信号同频的余弦函数,lRnn()为噪声的自相关函数,随为噪声的自相关函数,随的添加,衰减得很快,的添加,衰减得很快,lRxx()为输出端最初的波形,仍混有噪声的干扰。为输出端最初的波形,仍混有噪声的干扰。 l输 入 乘 法 器 的 是 被 含 有 噪 声输 入 乘 法 器 的 是 被 含 有 噪 声 n i ( t )n i ( t ) 的 信 号的 信 号x(t)=ni(t)+Si(t)x(t)=ni(t)+Si(t)和被延时的与被检测信号和被延时的与被检测信号Si(t)Si(t)同频率的参考信

15、号同频率的参考信号y(t)y(t),最后积分器的输出为,最后积分器的输出为 : :)()()()(1)(2T 2 lim synyTTxyRRdttytxTR+)()()()(1)(2T 2 lim synyTTxyRRdttytxTR+相互关检测特点相互关检测特点比自相关输出的噪声有关项要少比自相关输出的噪声有关项要少2项,故相互项,故相互关检测比自相关检测抑制噪声的才干强,关检测比自相关检测抑制噪声的才干强,并有一定的相互关增益。故抑制噪声的才并有一定的相互关增益。故抑制噪声的才干优于自相关。干优于自相关。相互关检测要求用与被测信号同频率的参考相互关检测要求用与被测信号同频率的参考信号信号

16、yt,当被测信号,当被测信号Sit未知时,未知时,要获得与要获得与Sit同频率的信号在某些情况同频率的信号在某些情况下是困难的。要做大量实验任务,才干确下是困难的。要做大量实验任务,才干确定,这时普通不采用相互关检测。定,这时普通不采用相互关检测。典型的锁定放大器主要由三大部分组成:典型的锁定放大器主要由三大部分组成: 信号通道、参考通道、相关器信号通道、参考通道、相关器 相关器是锁定放大器的中心部件,锁定放大器相关器是锁定放大器的中心部件,锁定放大器之所以有很强的抑噪才干,主要是靠相关器消除噪之所以有很强的抑噪才干,主要是靠相关器消除噪声和干扰。相关器又称之为相敏检波器声和干扰。相关器又称之

17、为相敏检波器PSDPhase Sensitive Detector或相关解调器,主要是或相关解调器,主要是由一个乘法器经常运用的是开关乘法器和一个由一个乘法器经常运用的是开关乘法器和一个积分器组成。积分器组成。输入输出波形:输入输出波形: V01为未接为未接C1、C2的输出的输出; V02为接为接C1、C2的输出的输出相敏检波器电路相敏检波器电路 开关电路开关电路积分电路积分电路开关式开关式乘法器乘法器VBVAV1R1C0V0- -+ +R0i1i2i3相关器的原理图相关器的原理图VR0Tt参考信号参考信号VB波形波形)12sin(12140tnnVRnB+) sin(+tVVAmA那么乘法器

18、的输出积分器的输入电压那么乘法器的输出积分器的输入电压 : ) 12sin(121) sin(401tnntVVVVRnAmBA+m开关式开关式乘法器乘法器VBVAV1R1C0V0- -+ +R0i1i2i3相关器的原理图相关器的原理图假设积分器的输出电压为假设积分器的输出电压为V0V0,那么,那么V1V1、 V0V0满足微分满足微分方程:方程: 110000RVRVdtdVC+200122001220012200120100)12(1)cos()12(1)cos()12(1)12(cos)12(1)12(cos)12(1200CRnCRneCRntnCRntnnRVRVRnRnCRtRnRR

19、nRnmA0012) 12(CRnarctgRn+0012) 12(CRnarctgRn+式中式中 : l 输入信号与参考信号的基波频率相等时输入信号与参考信号的基波频率相等时为积分器的时间常数。为积分器的时间常数。RcTt 且且00CRTcl包含待测信号的幅度包含待测信号的幅度VAm;lR0/R1是近似积分器或低通滤波器的直流放大是近似积分器或低通滤波器的直流放大倍数或直流增益;倍数或直流增益; lV0与输入信号与参考信号之间相位差与输入信号与参考信号之间相位差的余弦成的余弦成正比:正比:0,V0最大;最大; /2,V00。cos2100AmVRRV稳态输出电压稳态输出电压频率一样,相位不同

20、频率一样,相位不同Rn) 1(2+100CRR00V且时间常数且时间常数Tc=R0C0取足够大,使取足够大,使那么:那么:且满足且满足Rn) 12(+100CRR那么那么T R0C0T R0C0时,可得到:时,可得到:cos)12(2100+nVRRVAm当当n=0n=0时,即为基波输出,振幅为:时,即为基波输出,振幅为: 0102AmAmVVRR)12(10 122+nAmAmVnVRR记作那么:那么: 1210)12(+nVVAmnAm1210)12(+nVVAmnAm用图表示:用图表示: 011/31/51/71/9/R13579相关器奇次谐波输出的频率呼应相关器奇次谐波输出的频率呼应0

21、)12(AmnAmVV+ ) 12(+Rn当当可简化为:可简化为:100CRR)(00cTCRt 20012100)(1) cos() 12(2CRtnVRRVnAm+12 +n代表奇次谐波与参考信号的相位差。代表奇次谐波与参考信号的相位差。 由上式可画出相关器输出函数的幅频特性图由上式可画出相关器输出函数的幅频特性图相关器输出函数的幅频特性图: 0)12(AmnAmVV+20012100)(1) cos() 12(2CRtnVRRVnAm+ 以上是输入信号为正弦波的情况,实践丈量中,以上是输入信号为正弦波的情况,实践丈量中,常把慢变化或直流信号斩波,使之成为方波信号后常把慢变化或直流信号斩波

22、,使之成为方波信号后再进展丈量,这时:再进展丈量,这时: )() 12sin(12140+tnnVVRnAmA可按同样的方法运算,求解化简得到:可按同样的方法运算,求解化简得到: )21 (100AmVRRV为两方波的相位差为两方波的相位差参考信号为对称方波,且参考信号为对称方波,且 : )12sin(12140tnnVRnB+为输入信号相对于参考信号的延迟时间。为输入信号相对于参考信号的延迟时间。 /2 /2 V0V00相关器的输出与相位差的线性关系相关器的输出与相位差的线性关系)21 (100AmVRRV 输入信号为对称方波时,相输入信号为对称方波时,相关器输出直流电压为信号幅关器输出直流

23、电压为信号幅度度VAm乘以积分器的直乘以积分器的直流放大倍数流放大倍数R0/R1,且,且与两方波的相位差与两方波的相位差成线性成线性关系。由此可见相敏检波器关系。由此可见相敏检波器的意义。的意义。AmVRRVV10max0000VmAVRRVV10max0020ssnsssnsoVnVVVnnVV 1211+sjnjsVnV1122222212222121)(1nnnnnnnnnnnnnoVnVnVVVnnVVVVV+222222nisinsnosoVVnVVnVVnPPPPVVVVSNIRnisinosonisinoso/2222101nisiPP400nsPP401014/00nisins

24、PPPPn其中其中V1V1t t为输入信号,为输入信号, V2V2t t为与为与V1V1t t周期一样的参考信号,周期一样的参考信号,同步开关受同步开关受V2V2t t产生的控制信号控制,能产生的控制信号控制,能保证保证V1V1t t在累积器中同相地累积起来。在累积器中同相地累积起来。 其中其中ViVit t为输入信号,为输入信号, VRVRt t为与为与ViVit t周期周期一样的参考信号,同步开关受一样的参考信号,同步开关受VRVRt t产生的控制信号控制,产生的控制信号控制,能保证能保证ViVit t在累积器中同相在累积器中同相地累积起来。地累积起来。 时间常数时间常数T=2RC留意:相

25、关器输出为直流,而同步留意:相关器输出为直流,而同步积分器输出为交流方波!积分器输出为交流方波!)12sin(12140tnnVRnR+1当输入信号为与参考信号同频的正弦波时,当输入信号为与参考信号同频的正弦波时,且且2RC1,t2RC时,那么稳压解为:时,那么稳压解为: cos2AmmRVV 输出方波幅值输出方波幅值Vm正比于信号幅值和信号与参考信号之间的相位差余弦。正比于信号幅值和信号与参考信号之间的相位差余弦。R如采用如下图的运放,那么:如采用如下图的运放,那么:cos21AmmVRRV ) sin(+tVVAmA3输入信号为参考信号的奇次谐波输入信号为参考信号的奇次谐波2输入信号为参考信号的偶次谐波时输入信号为参考信号的偶次谐波时0mVRl) 1(2+4输入信号频率偏离参考信号基波或奇次谐波一个小量输入信号频率偏离参考信号基波或奇次谐波一个小量2/1)2(1)cos(2+RCtKRIVKimKmRK) 12(+lKcos2KRVVAmm5当输入信号为与参考信号同频的方波时:当输入信号为与参考信号同频的方波时:)() 12s

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论