




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、13.4 课题学习最短路径问题 相传,古希腊亚历山大里亚城里有一位久负盛名相传,古希腊亚历山大里亚城里有一位久负盛名的学者,名叫海伦有一天,一位将军专程拜访海伦,的学者,名叫海伦有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题:求教一个百思不得其解的问题:从图中的从图中的A 地出发,到一条笔直的河边地出发,到一条笔直的河边l 饮马,饮马,然后到然后到B 地到河边什么地方饮马可使他所走的路线地到河边什么地方饮马可使他所走的路线全程最短?全程最短?BAl数学经典数学经典导入新课导入新课导入新课导入新课复习引入复习引入1.如图,连接A、B两点的所有连线中,哪条最短?为什么?AB最短,因为两点
2、之间,线段最短2.如图,点P是直线l外一点,点P与该直线l上各点连接的所有线段中,哪条最短?为什么?PlABCDPC最短,因为垂线段最短3.在我们前面的学习中,还有哪些涉及比较线段大小的基本事实?三角形三边关系:两边之和大于第三边;斜边大于直角边.4.如图,如何做点A关于直线l的对称点?AlA 讲授新课讲授新课最短路径问题 “两点的所有连线中,线段最短”“连接直线外一点与直线上各点的所有线段中,垂线段最短”等的问题,我们称之为最短路径问题.现实生活中经常涉及到选择最短路径问题,本节将利用数学知识探究数学史的著名的“牧马人饮马问题”及“造桥选址问题”.ABPlABCD牧马人饮马问题牧马人饮马问题
3、如图,牧马人从点A地出发,到一条笔直的河边l饮马,然后到B地,牧马人到河边的什么地方饮马,可使所走的路径最短?C抽象成ABl数学问题作图问题:在直线l上求作一点C,使AC+BC最短问题.实际问题ABl问题1 现在假设点A,B分别是直线l异侧的两个点,如何在l上找到一个点,使得这个点到点A,点B的距离的和最短?AlBC根据是“两点之间,线段最短”,可知这个交点即为所求.连接AB,与直线l相交于一点C.问题2 如果点A,B分别是直线l同侧的两个点,又应该如何解决?想一想:对于问题2,如何将点B“移”到l 的另一侧B处,满足直线l 上的任意一点C,都保持CB 与CB的长度相等? ABl利用轴对称,作
4、出点B关于直线l的对称点B.方法揭晓方法揭晓作法:(1)作点B 关于直线l 的对称点B;(2)连接AB,与直线l 相交于点C 则点C 即为所求 ABlB C问题3你能用所学的知识证明AC +BC最短吗? 证明:如图,在直线l 上任取一点C(与点C 不重合),连接AC,BC,BC由轴对称的性质知, BC =BC,BC=BC AC +BC = AC +BC = AB, AC+BC= AC+BC在ABC中, ABAC+BC, AC +BCAC+BC即AC +BC 最短ABlB CC 造桥选址问题造桥选址问题如图,A和B两地在一条河的两岸,现要在河上造一座桥MN。桥造在何处可使从A到B的路径AMNB最
5、短(假定河的两岸是平行的直线,桥要与河垂直)?BAABNM 1.如图假定任选位置造桥MN,连接AM和BN,从A到B的路径是AM+MN+BN,那么怎样确定什么情况下最短呢?BA2.利用线段公理解决问题我们遇到了什么障碍呢?思维分析我们能否在不改变AM+MN+BN的前提下把桥转化到一侧呢?什么图形变换能帮助我们呢?思维火花各抒己见1.把A平移到岸边.2.把B平移到岸边.3.把桥平移到和A相连.4.把桥平移到和B相连.BA1.把A平移到岸边.BA()AM+MN+BN长度改变了2.把B平移到岸边.BA()AM+MN+BN长度改变了怎样调整呢?把A或B分别向下或上平移一个桥长那么怎样确定桥的位置呢?BA
6、问题解决BAA1MN如图,平移A到A1,使AA1等于河宽,连接A1B交河岸于N作桥MN,此时路径AM+MN+BN最短.理由:另任作桥M1N,连接,连接AM,BN,AN.由平移性质可知,AMAN,AAMNMN,AMAN.AM+MN+BN转化为,而转化为.在ANB中,由线段公理知A1N1+BN1A1B.因此 AM+MN+BN.ABMNECD证明:由平移的性质,得 BNEM 且且BN=EM, MN=CD, BDCE, BD=CE,所以A,B两地的距离:AM+MN+BN=AM+MN+EM=AE+MN,若桥的位置建在CD处,连接AC,CD,DB,CE,则AB两地的距离为:AC+CD+DB=AC+CD+C
7、E=AC+CE+MN,在ACE中,AC+CEAE, AC+CE+MNAE+MN,即AC+CD+DB AM+MN+BN,所以桥的位置建在MN处,AB两地的路程最短.方法归纳解决最短路径问题的方法解决最短路径问题的方法 1.在解决最短路径问题时,我们通常利用轴对称、平移等变化把已知问题转化为容易解决的问题,从而作出最短路径的选择.2.当涉及含有固定线段“桥”的方法是构造平行四边形,从而将问题转化为平行四边形的问题解答.当堂练习当堂练习1.如图,直线l是一条河,P、Q是是两个村庄.欲在l上的某处修建一个水泵站,向P、Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需要管道最短的是( )
8、PQlAMPQlBMPQlCMPQlDMD2.如图,牧童在A处放马,其家在B处,A、B到河岸的距离分别为AC和BD,且AC=BD,若点A到河岸CD的中点的距离为500米,则牧童从A处把马牵到河边饮水再回家,所走的最短距离是 米.ACBD河10003.如图,荆州古城河在CC处直角转弯,河宽相同,从A处到B处,须经两座桥:DD ,EE (桥宽不计),设护城河以及两座桥都是东西、南北方向的,怎样架桥可使ADD E EB的路程最短?ADD CCEEB解:作AFCD,且AF=河宽,作BG CE,且BG=河宽,连接GF,与河岸相交于E ,D.作DD,EE即为桥.理由:由作图法可知,AF/DD,AF=DD,则四边形AFDD为平行四边形,于是AD=FD,同理,BE=GE,由两点之间线段最短可知,GF最
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 合肥市专利权质押融资:现状、困境与策略转型研究
- 合作学习:高职英语听力教学的创新驱动力
- 押题宝典教师招聘之《小学教师招聘》通关考试题库附参考答案详解(基础题)
- 2025年教师招聘之《幼儿教师招聘》综合提升试卷含答案详解(基础题)
- 教师招聘之《小学教师招聘》通关训练试卷详解附参考答案详解【达标题】
- 2025年教师招聘之《小学教师招聘》通关提分题库带答案详解(突破训练)
- 教师招聘之《小学教师招聘》练习题(一)【典型题】附答案详解
- 教师招聘之《幼儿教师招聘》考试押题密卷及参考答案详解【黄金题型】
- 教师招聘之《幼儿教师招聘》测试卷附答案详解(培优a卷)
- 派出所执法规范化整改措施及下一步工作计划
- 一年级开学家长会 课件
- GB/T 44425-2024假肢装配康复训练规程
- 成考语文-语言知识及运用市公开课获奖课件省名师示范课获奖课件
- Z20名校联盟(浙江省名校新高考研究联盟)2025届高三第一次联考 物理试卷(含答案详解)
- 过敏性休克课件
- 车位租给别人安装充电桩协议
- 大学生毕业论文写作教程(高校毕业生论文写作指课程导)全套教学课件
- 钢结构设计原理 课件 第2章 钢结构的材料
- 农村太阳能路灯施工方案
- 学术规范和论文写作-教学大纲
- 软件模块化设计与开发标准与规范
评论
0/150
提交评论