




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 初中数学知识及公式大全初中数学知识点口诀有理数的加法运算同号两数来相加,绝对值加不变号。异号相加大减小,大数决定和符号。互为相反数求和,结果是零须记好。【注】“大”减“小”是指绝对值的大小。有理数的减法运算减正等于加负,减负等于加正。有理数的乘法运算符号法则同号得正异号负,一项为零积是零。合并同类项说起合并同类项,法则千万不能忘。只求系数代数和,字母指数留原样。去、添括号法则去括号或添括号,关键要看连接号。扩号前面是正号,去添括号不变号。括号前面是负号,去添括号都变号。解方程已知未知闹分离,分离要靠移完成。移加变减减变加,移乘变除除变乘。平方差公式两数和乘两数差,等于两数平方差。积化和差变两
2、项,完全平方不是它。完全平方公式二数和或差平方,展开式它共三项。首平方与末平方,首末二倍中间放。和的平方加联结,先减后加差平方。完全平方公式首平方又末平方,二倍首末在中央。和的平方加再加,先减后加差平方。解一元一次方程先去分母再括号,移项变号要记牢。同类各项去合并,系数化“1”还没好。求得未知须检验,回代值等才算了。解一元一次方程先去分母再括号,移项合并同类项。系数化1还没好,准确无误不白忙。因式分解与乘法和差化积是乘法,乘法本身是运算。积化和差是分解,因式分解非运算。因式分解两式平方符号异,因式分解你别怕。两底和乘两底差,分解结果就是它。两式平方符号同,底积2倍坐中央。因式分解能与否,符号上
3、面有文章。同和异差先平方,还要加上正负号。同正则正负就负,异则需添幂符号。因式分解一提二套三分组,十字相乘也上数。四种方法都不行,拆项添项去重组。重组无望试求根,换元或者算余数。多种方法灵活选,连乘结果是基础。同式相乘若出现,乘方表示要记住。【注】 一提(提公因式)二套(套公式)因式分解一提二套三分组,叉乘求根也上数。五种方法都不行,拆项添项去重组。对症下药稳又准,连乘结果是基础。二次三项式的因式分解先想完全平方式,十字相乘是其次。两种方法行不通,求根分解去尝试。比和比例两数相除也叫比,两比相等叫比例。外项积等内项积,等积可化八比例。分别交换内外项,统统都要叫更比。同时交换内外项,便要称其为反
4、比。前后项和比后项,比值不变叫合比。前后项差比后项,组成比例是分比。两项和比两项差,比值相等合分比。前项和比后项和,比值不变叫等比。解比例外项积等内项积,列出方程并解之。求比值由已知去求比值,多种途径可利用。活用比例七性质,变量替换也走红。消元也是好办法,殊途同归会变通。正比例与反比例商定变量成正比,积定变量成反比。正比例与反比例变化过程商一定,两个变量成正比。变化过程积一定,两个变量成反比。判断四数成比例四数是否成比例,递增递减先排序。两端积等中间积,四数一定成比例。判断四式成比例四式是否成比例,生或降幂先排序。两端积等中间积,四式便可成比例。比例中项成比例的四项中,外项相同会遇到。有时内项
5、会相同,比例中项少不了。比例中项很重要,多种场合会碰到。成比例的四项中,外项相同有不少。有时内项会相同,比例中项出现了。同数平方等异积,比例中项无处逃。根式与无理式表示方根代数式,都可称其为根式。根式异于无理式,被开方式无限制。被开方式有字母,才能称为无理式。无理式都是根式,区分它们有标志。被开方式有字母,又可称为无理式。求定义域求定义域有讲究,四项原则须留意。负数不能开平方,分母为零无意义。指是分数底正数,数零没有零次幂。限制条件不唯一,满足多个不等式。求定义域要过关,四项原则须注意。负数不能开平方,分母为零无意义。分数指数底正数,数零没有零次幂。限制条件不唯一,不等式组求解集。解一元一次不
6、等式先去分母再括号,移项合并同类项。系数化“1”有讲究,同乘除负要变向。先去分母再括号,移项别忘要变号。同类各项去合并,系数化“1”注意了。同乘除正无防碍,同乘除负也变号。解一元一次不等式组大于头来小于尾,大小不一中间找。大大小小没有解,四种情况全来了。同向取两边,异向取中间。中间无元素,无解便出现。幼儿园小鬼当家,(同小相对取较小)敬老院以老为荣,(同大就要取较大)军营里没老没少。(大小小大就是它)大大小小解集空。(小小大大哪有哇)解一元二次不等式首先化成一般式,构造函数第二站。判别式值若非负,曲线横轴有交点。A正开口它向上,大于零则取两边。代数式若小于零,解集交点数之间。方程若无实数根,口
7、上大零解为全。小于零将没有解,开口向下正相反。用平方差公式因式分解异号两个平方项,因式分解有办法。两底和乘两底差,分解结果就是它。用完全平方公式因式分解两平方项在两端,底积2倍在中部。同正两底和平方,全负和方相反数。分成两底差平方,方正倍积要为负。两边为负中间正,底差平方相反数。一平方又一平方,底积2倍在中路。三正两底和平方,全负和方相反数。分成两底差平方,两端为正倍积负。两边若负中间正,底差平方相反数。用公式法解一元二次方程要用公式解方程,首先化成一般式。调整系数随其后,使其成为最简比。确定参数abc,计算方程判别式。判别式值与零比,有无实根便得知。有实根可套公式,没有实根要告之。用常规配方
8、法解一元二次方程左未右已先分离,二系化“1”是其次。一系折半再平方,两边同加没问题。左边分解右合并,直接开方去解题。该种解法叫配方,解方程时多练习。用间接配方法解一元二次方程已知未知先分离,因式分解是其次。调整系数等互反,和差积套恒等式。完全平方等常数,间接配方显优势【注】 恒等式解一元二次方程方程没有一次项,直接开方最理想。如果缺少常数项,因式分解没商量。b、c相等都为零,等根是零不要忘。b、c同时不为零,因式分解或配方,也可直接套公式,因题而异择良方。正比例函数的鉴别判断正比例函数,检验当分两步走。一量表示另一量, 是与否。若有还要看取值,全体实数都要有。正比例函数是否,辨别需分两步走。一
9、量表示另一量, 有没有。若有再去看取值,全体实数都需要。区分正比例函数,衡量可分两步走。一量表示另一量, 是与否。若有还要看取值,全体实数都要有。正比例函数的图象与性质正比函数图直线,经过 和原点。K正一三负二四,变化趋势记心间。K正左低右边高,同大同小向爬山。K负左高右边低,一大另小下山峦。一次函数一次函数图直线,经过 点。K正左低右边高,越走越高向爬山。1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理 经过直线外一点,有且只有一
10、条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理 三角形两边的和大于第三边 16 推论 三角形两边的差小于第三边 17 三角形内角和定理 三角形三个内角的和等于180 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公
11、理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角) 31 推论1
12、等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60 34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论 2 有一个角等于60的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理 和一条线段两个端点距离相等
13、的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1 关于某条直线对称的两个图形是全等形 43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2 47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a2+b2=c2 ,那么这个三角形是直角三角形 48定
14、理 四边形的内角和等于360 49四边形的外角和等于360 50多边形内角和定理 n边形的内角的和等于(n-2)180 51推论 任意多边的外角和等于360 52平行四边形性质定理1 平行四边形的对角相等 53平行四边形性质定理2 平行四边形的对边相等 54推论 夹在两条平行线间的平行线段相等 55平行四边形性质定理3 平行四边形的对角线互相平分 56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形 57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形 58平行四边形判定定理3 对角线互相平分的四边形是平行四边形 59平行四边形判定定理4 一组对边平行相等的四边形是平行四边
15、形 60矩形性质定理1 矩形的四个角都是直角 61矩形性质定理2 矩形的对角线相等 62矩形判定定理1 有三个角是直角的四边形是矩形 63矩形判定定理2 对角线相等的平行四边形是矩形 64菱形性质定理1 菱形的四条边都相等 65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 66菱形面积=对角线乘积的一半,即S=(ab)2 67菱形判定定理1 四边都相等的四边形是菱形 68菱形判定定理2 对角线互相垂直的平行四边形是菱形 69正方形性质定理1 正方形的四个角都是直角,四条边都相等 70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 71定理
16、1 关于中心对称的两个图形是全等的 72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一 点平分,那么这两个图形关于这一点对称 74等腰梯形性质定理 等腰梯形在同一底上的两个角相等 75等腰梯形的两条对角线相等 76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形 77对角线相等的梯形是等腰梯形 78平行线等分线段定理 如果一组平行线在一条直线上截得的线段 相等,那么在其他直线上截得的线段也相等 79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰 80 推论2 经过三角形一边的中点与另一
17、边平行的直线,必平分第 三边 81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它 的一半 82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的 一半 L=(a+b)2 S=Lh 83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d wc呁/S? 84 (2)合比性质 如果ab=cd,那么(ab)b=(cd)d 85 (3)等比性质 如果ab=cd=mn(b+d+n0),那么 (a+c+m)(b+d+n)=ab 86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应 线段成比例 87 推论 平行于三角形一边的直线截其他两
18、边(或两边的延长线),所得的对应线段成比例 88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边 89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例 90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似 91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA) 92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似 93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS) 94 判定定理3 三边对应成比例,两三角形相似(S
19、SS) 95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三 角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似 96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平 分线的比都等于相似比 97 性质定理2 相似三角形周长的比等于相似比 98 性质定理3 相似三角形面积的比等于相似比的平方 99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等 于它的余角的正弦值 100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等 于它的余角的正切值 101圆是定点的距离等于定长的点的集合 102圆的内部可以看作是圆心的距离小于半径的点的集合 103圆的外部可以
20、看作是圆心的距离大于半径的点的集合 104同圆或等圆的半径相等 105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半 径的圆 106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直 平分线 107到已知角的两边距离相等的点的轨迹,是这个角的平分线 108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距 离相等的一条直线 109定理 不在同一直线上的三点确定一个圆。 110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧 111推论1 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 弦的垂直平分线经过圆心,并且平分弦所对的两条弧 平分弦所对的一条弧的直
21、径,垂直平分弦,并且平分弦所对的另一条弧 112推论2 圆的两条平行弦所夹的弧相等 113圆是以圆心为对称中心的中心对称图形 114定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦的弦心距相等 115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等 116定理 一条弧所对的圆周角等于它所对的圆心角的一半 117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等 118推论2 半圆(或直径)所对的圆周角是直角;90的圆周角所 对的弦是直径 119推论3 如果三角形一边上的中线等于这
22、边的一半,那么这个三角形是直角三角形 120定理 圆的内接四边形的对角互补,并且任何一个外角都等于它 的内对角 121直线L和O相交 dr 直线L和O相切 d=r 直线L和O相离 dr 122切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线 123切线的性质定理 圆的切线垂直于经过切点的半径 124推论1 经过圆心且垂直于切线的直线必经过切点 125推论2 经过切点且垂直于切线的直线必经过圆心 126切线长定理 从圆外一点引圆的两条切线,它们的切线长相等, 圆心和这一点的连线平分两条切线的夹角 127圆的外切四边形的两组对边的和相等 128弦切角定理 弦切角等于它所夹的弧对的圆
23、周角 129推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等 130相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积 相等 131推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的 两条线段的比例中项 132切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割 线与圆交点的两条线段长的比例中项 133推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等 134如果两个圆相切,那么切点一定在连心线上 135两圆外离 dR+r 两圆外切 d=R+r 两圆相交 R-rdR+r(Rr) 两圆内切 d=R-r(Rr) 两圆内含dR-r(Rr) 136定
24、理 相交两圆的连心线垂直平分两圆的公*弦 137定理 把圆分成n(n3): 依次连结各分点所得的多边形是这个圆的内接正n边形 经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形 138定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆 139正n边形的每个内角都等于(n-2)180n 140定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形 141正n边形的面积Sn=pnrn2 p表示正n边形的周长 142正三角形面积3a4 a表示边长 143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 360,因此k(n-2)180n=360化为
25、(n-2)(k-2)=4 144弧长扑愎剑篖=n兀R180 145扇形面积公式:S扇形=n兀R2360=LR2 146内公切线长= d-(R-r) 外公切线长= d-(R+r) (还有一些,大家帮补充吧) 实用工具:常用数学公式 公式分类 公式表达式 乘法与因式分解 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2) 三角不等式 |a+b|a|+|b| |a-b|a|+|b| |a|b-bab |a-b|a|-|b| -|a|a|a| 一元二次方程的解 -b+(b2-4ac)/2a -b-(b2-4ac)/2a 根与系数的关系
26、 X1+X2=-b/a X1*X2=c/a 注:韦达定理 判别式 b2-4ac=0 注:方程有两个相等的实根 b2-4ac0 注:方程有两个不等的实根 b2-4ac0 注:方程没有实根,有*轭复数根 三角函数公式 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) cot(A+B)=(c
27、otAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA) 倍角公式 tan2A=2tanA/1-(tanA)2 cos2a=(cosa)2-(sina)2=2(cosa)2 -1=1-2(sina)2 半角公式 sin(A/2)=(1-cosA)/2) sin(A/2)=-(1-cosA)/2) cos(A/2)=(1+cosA)/2) cos(A/2)=-(1+cosA)/2) tan(A/2)=(1-cosA)/(1+cosA) tan(A/2)=-(1-cosA)/(1+cosA) cot(A/2)=(1+cosA)/(1-cosA
28、) cot(A/2)=-(1+cosA)/(1-cosA) 和差化积 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) ) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin(A+B)/2)cos(A-B)/2 cosA+cosB=2cos(A+B)/2)sin(A-B)/2) tanA+tanB=sin(A+B)/cosAcosB初中数学总复习提纲 第一章 实数 重点 实数的有关概念及性质,实数的运算 内容提要 一、 重要概念 1数的分类及
29、概念 数系表: 说明:“分类”的原则:1)相称(不重、不漏) 2)有标准 2非负数:正实数与零的统称。(表为:x0) 常见的非负数有: 性质:若干个非负数的和为0,则每个非负担数均为0。 3倒数: 定义及表示法 性质:A.a1/a(a1);B.1/a中,a0;C.0a1时1/a1;a1时,1/a1;D.积为1。 4相反数: 定义及表示法 性质:A.a0时,a-a;B.a与-a在数轴上的位置;C.和为0,商为-1。 5数轴:定义(“三要素”) 作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。 6奇数、偶数、质数、合数(正整数自然数) 定义及表示: 奇数:2
30、n-1 偶数:2n(n为自然数) 7绝对值:定义(两种): 代数定义: 几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。 a0,符号“”是“非负数”的标志;数a的绝对值只有一个;处理任何类型的题目,只要其中有“”出现,其关键一步是去掉“”符号。 二、 实数的运算 1 运算法则(加、减、乘、除、乘方、开方) 2 运算定律(五个加法乘法交换律、结合律;乘法对加法的 分配律) 3 运算顺序:A.高级运算到低级运算;B.(同级运算)从“左” 到“右”(如5 5);C.(有括号时)由“小”到“中”到“大”。 三、 应用举例(略) 附:典型例题 1 已知:a、b、x在数轴上的位置
31、如下图,求证:x-a+x-b=b-a. 2.已知:a-b=-2且abba+cb+c abacbc(c0) abacbc(cb,bcac ab,cda+cb+d. 5一元一次不等式的解、解一元一次不等式 6一元一次不等式组的解、解一元一次不等式组(在数轴上表示解集) 7应用举例(略) 第七章 相似形 重点相似三角形的判定和性质 内容提要 一、本章的两套定理 第一套(比例的有关性质): 涉及概念:第四比例项比例中项比的前项、后项,比的内项、外项黄金分割等。 第二套: 注意:定理中“对应”二字的含义; 平行相似(比例线段)平行。 二、相似三角形性质 1对应线段;2对应周长;3对应面积。 三、相关作图
32、 作第四比例项;作比例中项。 四、证(解)题规律、辅助线 1“等积”变“比例”,“比例”找“相似”。 2找相似找不到,找中间比。方法:将等式左右两边的比表示出来。 3添加辅助平行线是获得成比例线段和相似三角形的重要途径。 4对比例问题,常用处理方法是将“一份”看着k;对于等比问题,常用处理办法是设“公比”为k。 5对于复杂的几何图形,采用将部分需要的图形(或基本图形)“抽”出来的办法处理。 五、 应用举例(略) 第八章 函数及其图象 重点正、反比例函数,一次、二次函数的图象和性质。 内容提要 一、平面直角坐标系 1各象限内点的坐标的特点 2坐标轴上点的坐标的特点 3关于坐标轴、原点对称的点的坐
33、标的特点 4坐标平面内点与有序实数对的对应关系 二、函数 1表示方法:解析法;列表法;图象法。 2确定自变量取值范围的原则:使代数式有意义;使实际问题有 意义。 3画函数图象:列表;描点;连线。 三、几种特殊函数 (定义图象性质) 1 正比例函数 定义:y=kx(k0) 或y/x=k。 图象:直线(过原点) 性质:k0,k0,k0时,开口向上;a0时,在对称轴左侧,右侧;a0时,图象位于,y随x;k0时,开口向上,当a0时,开口向下。四、图形的全等1、能够完全重合的两个图形就是全等图形。互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。2、全等图形的对应边相等,对应角相等。3、全等三角形的识别(1)如果两个三角形的三条边分别对应相等,那么这两个三角形全等。简记(边边边或SSS)(2) 如果两个三角形有两边及其夹角分别对应相等,那么这个三角形全等。简记为(边角边SAS) (3)如果两个
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 技师考试题库及答案详解
- 森林防灭火知识培训简报课件
- 森林防火知识培训课件
- 梭菌基础知识培训课件
- 2025年软件架构师面试攻略与热点预测题解析
- 《招标采购专业实务》模拟试题及答案
- 2025年药品安全操作规程题解
- 2025驾照检验考试试题及答案
- 2025年医生招聘考试题库及答案解析
- 2025年政府公务员考试模拟试题及标准答案详解
- 渐进片试题及答案
- 食品质检考试真题及复习资料
- 天翼云认证高级解决方案架构师练习试题附答案
- 2025年茯苓市场调查报告
- 2024广东省中考英语真题【原卷版】
- 物业管理中的控烟规章制度
- 云上贵州大数据(集团)有限公司招聘笔试冲刺题2024
- 反比例函数教材分析课件
- 空调工人安装合同模板
- Unit 8 Lets celebrate!教学设计2024-2025学年牛津译林版英语七年级上册
- 文言合集(1):120个文言实词小故事(教师版+学生版)
评论
0/150
提交评论