高中函数图像大全_第1页
高中函数图像大全_第2页
高中函数图像大全_第3页
高中函数图像大全_第4页
高中函数图像大全_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、高中函数图像大全免费指数函数概念:一般地,函数y=ax(a0,且a1)叫做指数函数,其中x是自变量,函数的定义域是r。注意:指数函数对外形要求严格,前系数要为,否则不能为指数函数。 指数函数的定义仅是形式定义。指数函数的图像与性质:规律:1当两个指数函数中的a互为倒数时,两个函数关于y轴对称,但这两个函数都不具有奇偶性。 2.当a1时,底数越大,图像上升的越快,在轴的右侧,图像越靠近y轴; 当0a时,底数越小,图像下降的越快,在y轴的左侧,图像越靠近y轴。 在y轴右边“底大图高”;在y轴左边“底大图低”。 3.四字口诀:“大增小减”。即:当a时,图像在上是增函数;当00,a)的反函数称为对数函

2、数,并记为=lgax(a0,a).因为指数函数y=ax的定义域为(-,),值域为(,+),所以对数函数=logax的定义域为(0,+),值域为(-,).2对数函数的图像与性质对数函数与指数函数互为反函数,因此它们的图像对称于直线=x. 据此即可以画出对数函数的图像,并推知它的性质为了研究对数函数y=ogax(a0,a)的性质,我们在同一直角坐标系中作出函数yg2x,y=log10,y=og10,y=logx,ygx的草图由草图,再结合指数函数的图像和性质,可以归纳、分析出对数函数y=logax(a0,1)的图像的特征和性质.见下表图象1a1性质()0()当=1时,y=0(3)当x时,00x时,

3、y0(4)在(0,+)上是增函数(4)在(,)上是减函数补充性质设y1=ogax 2=ox其中a1,b(或a1 b1)当x1时“底大图低”即若ab则y1y当0x,a1)y=logax(a,a)定义域(-,+)(,+)值域(0,+)(-,)函数值变化情况当1时,当0a1时,当时当01时,单调性当a时,ax是增函数;当0a1时,ogx是增函数;当00)叫做对号函数,因其在(,+)的图象似符号“”而得名,利用对号函数的图象及均值不等式,当x0时,(当且仅当即时取等号),由此可得函数(a0,b0,xr+)的性质:当时,函数(,b,xr+)有最小值,特别地,当a=b=时函数有最小值2。函数(,b0)在区

4、间(,)上是减函数,在区间(,+)上是增函数。因为函数(a0,b)是奇函数,所以可得函数(0,b0,xr)的性质:当时,函数(,b,xr)有最大值,特别地,当a=b=1时函数有最大值-2。函数(a,b)在区间(,-)上是增函数,在区间(,0)上是减函奇函数和偶函数(1)如果对于函数f(x)的定义域内的任意一个x值,都有f(x)=(x)那么就称f(x)为奇函数.如果对于函数f(x)的定义域内的任意一个x值,都有f(x)(x),那么就称f()为偶函数.说明:(1)由奇函数、偶函数的定义可知,只有当f()的定义域是关于原点成对称的若干区间时,才有可能是奇 ()判断是不是奇函数或偶函数,不能轻率从事,

5、例如判断f() 是不易的.为了便于判断有时可采取如下办法:计算f(x)+f(x),视其结果而说明是否是奇函数.用这个方法判断此函数较为方便:(x)(3)判断函数的奇偶性时,还应注意是否对定义域内的任何x值,当x0时,显然有()=f(x),但当x=0时,f(-x)=f(x)=1,(x)为非奇非偶函数.(4)奇函数的图象特征是关于坐标原点为对称的中心对称图形;偶函数的图象特征是关于y轴为对称轴的对称图形. (5)函数的单调性与奇偶性综合应用时,尤其要注意由它们的定义出发来进行论证.例 如果函数(x)是奇函数,并且在(0,)上是增函数,试判断在(,0)上的增减性 解 设x1,x(-,0),且x12x

6、0, f(x)在(0,+)上是增函数, f()f(x2) 又f(x)是奇函数,f(x)=-(x)对任意x成立,=-f(x)-f(x2) f(x1)(2) f()在(,0)上也为增函数 由此可得出结论:一个奇函数若在(,+)上是增函数,则在(-,0)上也必是增函数,即奇函数在(,)上与(-,0)上的奇偶性相同 类似地可以证明,偶函数在(0,+)和(-,0)上的奇偶性恰好相反 时,f(x)的解析式 解 x0,x0. 又f()是奇函数,f(x)-(x).偶函数图象对称性的拓广与应用 我们知道,如果对于函数yf()定义域内任意一个x,都有f(-x)f(),那么函数(x)就叫做偶函数偶函数的图象关于y轴对称,反之亦真.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论