历年数列高考题汇编_第1页
历年数列高考题汇编_第2页
历年数列高考题汇编_第3页
历年数列高考题汇编_第4页
历年数列高考题汇编_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、历年高考真题汇编-数列答案(含)1、(2011年新课标卷文)解:()因为所以()所以的通项公式为.2、(2011全国新课标卷理)解:()设数列an的公比为q,由得所以。有条件可知a0,故。由得,所以。故数列an的通项式为an=。()故所以数列的前n项和为3、(2010新课标卷理)解()由已知,当n1时,。而 所以数列的通项公式为。()由知 从而 -得 。即 。4、(20I0年全国新课标卷文)解:(1)由am = a1 +(n-1)d及a1=5,a10=-9得 解得数列an的通项公式为an=11-2n。 .6分 (2)由(1) 知Sn=na1+d=10n-n2。 因为Sn=-(n-5)2+25.

2、 所以n=5时,Sn取得最大值。6、( 2011辽宁卷)解:(I)设等差数列的公差为d,由已知条件可得解得故数列的通项公式为 5分 (II)设数列,即,所以,当时, =所以综上,数列7、(2010年陕西省)解 ()由题设知公差d0,由a11,a1,a3,a9成等比数列得,解得d1,d0(舍去), 故an的通项an1+(n1)1n.()由()知=2n,由等比数列前n项和公式得Sn=2+22+23+2n=2n+1-28、(2009年全国卷)解: 设的公差为,的公比为由得 由得 由及解得 故所求的通项公式为 11、(2011浙江卷)解:设等差数列的公差为,由题意可知即,从而因为故通项公式 ()解:记

3、所以从而,当时,;当12、(2011湖北卷)13、(2010年山东卷)解:()设等差数列的首项为,公差为,由于,所以,解得,由于, ,所以,()因为,所以因此故 所以数列的前项和14、(2010陕西卷)解 ()由题设知公差d0,由a11,a1,a3,a9成等比数列得,解得d1,d0(舍去), 故an的通项an1+(n1)1n.()由()知=2n,由等比数列前n项和公式得Sm=2+22+23+2n=2n+1-2.、15、(2010重庆卷)16、(2010北京卷)解:()设等差数列的公差。 因为 所以 解得所以 ()设等比数列的公比为 因为所以 即=3所以的前项和公式为17、(2010浙江卷)解:

4、()由题意知S0=-3,a=S-S=-8所以解得a1=7所以S=-3,a1=7()因为SS+15=0,所以(5a1+10d)(6a1+15d)+15=0,即2a12+9da1+10d2+1=0.故(4a1+9d)2=d2-8. 所以d28.故d的取值范围为d-218、(2010四川卷)由()得解答可得,于是 若,将上式两边同乘以q有 两式相减得到 于是若,则所以,(12分)19、(2010上海卷)解:由 (1)可得:,即。同时 (2)从而由可得:即:,从而为等比数列,首项,公比为,通项公式为,从而20、(2009辽宁卷)解:()依题意有 由于 ,故 又,从而 ()由已知可得 故 从而 空间几何

5、答案25.【2012高考广东理18】【答案】本题考查空间直线与平面的位置关系,考查直线与平面垂直的证明、二面角的求解等问题,考查了学生的空间想象能力以及推理论证能力.【解析】(1)平面,面 平面,面 又面(2)由(1)得:, 平面是二面角的平面角 在中, 在中, 得:二面角的正切值为26.【2012高考辽宁理18】【命题意图】本题主要考查线面平行的判定、二面角的计算,考查空间想象能力、运算求解能力,是容易题.【解析】(1)连结,由已知三棱柱为直三棱柱,所以为中点.又因为为中点所以,又平面 平面,因此 6分(2)以为坐标原点,分别以直线为轴,轴,轴建立直角坐标系,如图所示设则,于是,所以,设是平

6、面的法向量,由得,可取设是平面的法向量,由得,可取因为为直二面角,所以,解得12分27.【2012高考湖北理19】【答案】()解法1:在如图1所示的中,设,则由,知,为等腰直角三角形,所以.由折起前知,折起后(如图2),且,所以平面又,所以于是 ,当且仅当,即时,等号成立,故当,即时, 三棱锥的体积最大 解法2:同解法1,得 令,由,且,解得当时,;当时, 所以当时,取得最大值故当时, 三棱锥的体积最大 ()解法1:以为原点,建立如图a所示的空间直角坐标系由()知,当三棱锥的体积最大时,于是可得,且设,则. 因为等价于,即,故,.所以当(即是的靠近点的一个四等分点)时, 设平面的一个法向量为,

7、由 及,得 可取 设与平面所成角的大小为,则由,可得,即28.【2012高考新课标理19】【答案】(1)在中, 得: 同理: 得:面 (2)面 取的中点,过点作于点,连接 ,面面面 得:点与点重合 且是二面角的平面角 设,则, 既二面角的大小为29.【2012高考江苏16】【答案】证明:(1)是直三棱柱,平面。 又平面,。 又平面,平面。 又平面,平面平面。 (2),为的中点,。 又平面,且平面,。 又平面,平面。 由(1)知,平面,。 又平面平面,直线平面30.【2012高考四川理19】 解析(1)连接OC。由已知,所成的角设AB的中点为D,连接PD、CD.因为AB=BC=CA,所以CDAB

8、.因为等边三角形,不妨设PA=2,则OD=1,OP=,AB=4.所以CD=2,OC=.在Rttan.故直线PC与平面ABC所成的角的大小为arctan6分(2)过D作DE于E,连接CE. 由已知可得,CD平面PAB.根据三垂线定理可知,CEPA,所以,.由(1)知,DE=在RtCDE中,tan故12分31.【2012高考福建理18】解答:()长方体中, 得:面面()取的中点为,中点为,连接 在中,面 此时()设,连接,过点作于点,连接 面, 得:是二面角的平面角 在中, 在矩形中, 得:32.【2012高考北京理16】【答案】解:(1),平面,又平面,又,平面。(2)如图建系,则,,设平面法向

9、量为则 又,与平面所成角的大小。(3)设线段上存在点,设点坐标为,则则,设平面法向量为,则 。假设平面与平面垂直,则,不存在线段上存在点,使平面与平面垂直。33.【2012高考浙江理20】【答案】()如图连接BDM,N分别为PB,PD的中点,在PBD中,MNBD又MN平面ABCD,MN平面ABCD;()如图建系:A(0,0,0),P(0,0,),M(,0),N(,0,0),C(,3,0)设Q(x,y,z),则,由,得: 即:对于平面AMN:设其法向量为则 同理对于平面AMN得其法向量为记所求二面角AMNQ的平面角大小为,则所求二面角AMNQ的平面角的余弦值为34.【2012高考重庆理19】解:

10、(1)由,为的中点,得,又,故,所以点到平面的距离为(2)如图,取为的中点,连结,则,又由(1)知,故,所以为所求的二面角的平面角。因为在面上的射影,又已知,由三垂线定理的逆定理得,从而都与互余,因此,所以,因此,,即,得。从而,所以,在中,。35.【2012高考江西理19】解:(1)证明:连接AO,在中,作于点E,因为,得,因为平面ABC,所以,因为,得,所以平面,所以,ByOCAEzA11B1C1x所以平面,又,得(2)如图所示,分别以所在的直线为x,y,z轴建立空间直角坐标系,则A(1,0,0), C(0,-2,0), A1(0.0,2),B(0,2,0)由(1)可知得点E的坐标为,由(

11、1)可知平面的法向量是,设平面的法向量,由,得,令,得,即所以即平面平面与平面BB1C1C夹角的余弦值是。36.【2012高考安徽理18】(【解析】(综合法)(I)取的中点为点,连接, 则,面面面,同理:面 得:共面,又面。()延长到,使 ,得:,面面面面,。()是二面角的平面角。在中,在中,得:二面角的余弦值为。37.【2012高考上海理19】解(1)因为PA底面ABCD,所以PACD,又ADCD,所以CD平面PAD, 从而CDPD. 3分ABCDPExyz 因为PD=,CD=2, 所以三角形PCD的面积为. 6分 (2)解法一如图所示,建立空间直角坐标系, 则B(2, 0, 0),C(2,

12、 2,0),E(1, , 1), ,. 8分 设与的夹角为q,则 ,q=.ABCDPEF 由此可知,异面直线BC与AE所成的角的大小是 12分 解法二取PB中点F,连接EF、AF,则 EFBC,从而AEF(或其补角)是异面直线 BC与AE所成的角 8分 在中,由EF=、AF=、AE=2 知是等腰直角三角形, 所以AEF=. 因此异面直线BC与AE所成的角的大小是 12分38.【2012高考全国卷理18】解:设,以为原点,为轴,为轴建立空间直角坐标系,则设。()证明:由得, 所以,所以,。所以,,所以平面;() 设平面的法向量为,又,由得,设平面的法向量为,又,由,得,由于二面角为,所以,解得。

13、 所以,平面的法向量为,所以与平面所成角的正弦值为,所以与平面所成角为.39.【2012高考山东理18】【答案】()证明:因为四边形为等腰梯形, 所以 又 , 所以 因此 , 又 ,且,平面, 所以 平面 ()解法一: 由(I)知,所以,又平面, 因此 两两垂直以为坐标原点,分别以所在的直线为轴,轴,轴建立空间直角坐标系,不妨设,则, , 因此 , 设平面的一个法向量为, 则 , 所以 ,取, 则 又平面的法向量可以取为, 所以 , 所以二面角的余弦值为 解法二: 取的中点,连结,由于,所以 又平面,平面,所以 由于,平面,所以平面,故所以为二面角的平面角 在等腰三角形中,由于, 因此,又, 所以, 故 ,因此 二面角的余弦值为40.【2012高考湖南理18】【答案】解法1(如图(1),连接AC,由AB=4,是的中点,所以所以而内的两条相交直线,所以CD平面PAE.()过点作由()CD平面PAE知,平面PAE.于是为直线与平面PAE所成的角,且.由知,为直线与平面所成的角.由题意,知因为所以由所以四边形是平行四边形,故于是在中,所以于是又梯形的面积为所以四棱锥的体积为解法2:如图(2),以A为坐标原点,所在直线分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论