




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、江苏省徐州市邳州市第四中学高中数学 8.2 向量的减法导学案 苏教版必修2 高一 年级 数学 学科 课 题向量的线性运算(二)课 型新课考纲要求1.通过实例,掌握向量减法的运算,并理解其几何意义;2.掌握向量减法与加法的逆运算关系,能准确作出两个向量的差向量,并且能掌握差向量的起点和终点的规律;3.能熟练地掌握用三角形法则和平行四边形法则作出两向量的差向量,了解向量方程,并会用几何法解向量方程;教学重点向量减法的概念和向量减法的作图法 教学难点减法运算时方向的确定预 习 指 导1.向量减法的定义若+=,则向量叫做与的差,记为-,求两个向量差的运算,叫做向量的减法.表示:-=+(-)2.向量减法
2、的法则根据向量减法的定义和向量加法的三角形法则,我们可以得到向量-的作图方法【思考】:已知,,怎样求作-?boa-(1)三角形法则:已知,,在平面内任取一点,作,则即-可以表示为从(减向量)的终点,指向(被减向量)的终点的向量(强调:,同起点时,-是连结,的终点,并指向“被减向量”的向量) oab(2)平行四边形法:在平面内任取一点o,作,则由向量加法的平行四边形法则可得=+(-)=-. 导 学 过 程一、回顾与反馈例1 (教材例1)如图2-2-7(1),已知向量,不共线,求作向量-【思考】:abcdo你能画图说明-=+(-)吗?例2 如图,是平行四边形的对角线的交点,若,,,试证明:+-=例3 用向量法证明:对角线互相平分的四边形是平行四边形例4 试证:对任意向量,都有【思考】:任意一个非零向量是否一定可以表示为两个不共线的向量的和?三、探究小结:1掌握向量减法概念并知道向量的减法的定义是建立在向量加法的基础上的;2会作两向量的差向量;3能够结合图形进行向量计算以及用两个向量表示其它向量。巩 固 训 练1已知正方形的边长等于1,求作向量:(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 地块发展定位与产品策略建议3篇
- 财务述职报告的总结(15篇)
- 建筑施工合同保证金说明3篇
- 中职班主任工作总结1000字(29篇)
- 张立江电子招投标观察3篇
- 房产授权委托书公证流程3篇
- 有关施工应急预案范文(18篇)
- “艺术表现”能力在高中音乐鉴赏课中的培养策略研究
- 2024年中国石油庆阳石化分公司高校毕业生招聘考试真题
- 2024年玉溪市华宁县市场监督管理局招聘公益性岗位人员考试真题
- 2025-2030中国网络贷款(融资)行业市场发展现状及发展趋势与投资研究报告
- 抖音账号合同协议
- 湖北省武汉市2025届高中毕业生四月调研考试政治试题及答案(武汉四调)
- 儿童生长发育的健康监测与指导
- 铺货协议合同
- 2025至2030年中国分子筛干燥剂市场现状分析及前景预测报告
- 福建省能源石化集团有限责任公司招聘笔试真题2024
- 专业税务顾问服务合同范本
- 走进物理-诺贝尔物理学奖的120年知到课后答案智慧树章节测试答案2025年春广西师范大学
- 基于Scrum的软件产品自动化测试框架研究
- 抢救病人护理书写规范
评论
0/150
提交评论