




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第一章质点运动学1 -1质点作曲线运动,在时刻t 质点的位矢为r,速度为v ,速率为v,t 至(t t)时间内的位移为r, 路程为s, 位矢大小的变化量为r ( 或称r),平均速度为,平均速率为(1) 根据上述情况,则必有()(A) r= s = r(B) r s r,当t0 时有dr= ds dr(C) r r s,当t0 时有dr= dr ds(D) r s r,当t0 时有dr= dr = ds(2) 根据上述情况,则必有()(A) = ,= (B) , (C) = , (D) ,= 分析与解(1) 质点在t 至(t t)时间内沿曲线从P 点运动到P点,各量关系如图所示, 其中路程s P
2、P, 位移大小rPP,而r r-r表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能)但当t0 时,点P无限趋近P点,则有drds,但却不等于dr故选(B)(2) 由于r s,故,即但由于drds,故,即由此可见,应选(C)1 -2一运动质点在某瞬时位于位矢r(x,y)的端点处,对其速度的大小有四种意见,即(1);(2);(3);(4)下述判断正确的是()(A) 只有(1)(2)正确 (B) 只有(2)正确(C) 只有(2)(3)正确 (D) 只有(3)(4)正确分析与解表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率通常用符号
3、vr表示,这是速度矢量在位矢方向上的一个分量;表示速度矢量;在自然坐标系中速度大小可用公式计算,在直角坐标系中则可由公式求解故选(D)1 -3质点作曲线运动,r 表示位置矢量, v表示速度,a表示加速度,s 表示路程, a表示切向加速度对下列表达式,即(1)d v /dt ;(2)dr/dt v;(3)ds/dt v;(4)d v /dta下述判断正确的是()(A) 只有(1)、(4)是对的 (B) 只有(2)、(4)是对的(C) 只有(2)是对的 (D) 只有(3)是对的分析与解表示切向加速度a,它表示速度大小随时间的变化率,是加速度矢量沿速度方向的一个分量,起改变速度大小的作用;在极坐标系
4、中表示径向速率vr(如题1 -2 所述);在自然坐标系中表示质点的速率v;而表示加速度的大小而不是切向加速度a因此只有(3) 式表达是正确的故选(D)1 -4一个质点在做圆周运动时,则有()(A) 切向加速度一定改变,法向加速度也改变(B) 切向加速度可能不变,法向加速度一定改变(C) 切向加速度可能不变,法向加速度不变(D) 切向加速度一定改变,法向加速度不变分析与解加速度的切向分量a起改变速度大小的作用,而法向分量an起改变速度方向的作用质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的至于a是否改变,则要视质点的速率情况而定质点作匀速率圆
5、周运动时, a恒为零;质点作匀变速率圆周运动时, a为一不为零的恒量,当a改变时,质点则作一般的变速率圆周运动由此可见,应选(B) 1 -5已知质点沿x 轴作直线运动,其运动方程为,式中x 的单位为m,t 的单位为 s求:(1) 质点在运动开始后4.0 s内的位移的大小;(2) 质点在该时间内所通过的路程;(3) t4 s时质点的速度和加速度分析位移和路程是两个完全不同的概念只有当质点作直线运动且运动方向不改变时,位移的大小才会与路程相等质点在t 时间内的位移x 的大小可直接由运动方程得到:,而在求路程时,就必须注意到质点在运动过程中可能改变运动方向,此时,位移的大小和路程就不同了为此,需根据
6、来确定其运动方向改变的时刻tp ,求出0tp 和tpt 内的位移大小x1 、x2 ,则t 时间内的路程,如图所示,至于t 4.0 s 时质点速度和加速度可用和两式计算题 1-5 图解(1) 质点在4.0 s内位移的大小 (2) 由 得知质点的换向时刻为 (t0不合题意)则所以,质点在4.0 s时间间隔内的路程为 (3) t4.0 s时1 -6已知质点的运动方程为,式中r 的单位为m,t 的单位为求:(1) 质点的运动轨迹;(2) t 0 及t 2时,质点的位矢;(3) 由t 0 到t 2内质点的位移r 和径向增量r; 分析质点的轨迹方程为y f(x),可由运动方程的两个分量式x(t)和y(t)
7、中消去t 即可得到对于r、r、r、s 来说,物理含义不同,(详见题1-1分析).解(1) 由x(t)和y(t)中消去t 后得质点轨迹方程为这是一个抛物线方程,轨迹如图(a)所示(2) 将t 0和t 2分别代入运动方程,可得相应位矢分别为 , 图(a)中的P、Q 两点,即为t 0和t 2时质点所在位置(3) 由位移表达式,得其中位移大小而径向增量题 1-6 图1 -7质点的运动方程为式中x,y 的单位为m,t 的单位为试求:(1) 初速度的大小和方向;(2) 加速度的大小和方向分析由运动方程的分量式可分别求出速度、加速度的分量,再由运动合成算出速度和加速度的大小和方向解(1) 速度的分量式为当t
8、 0 时, v0x -10 m·-1 , v0y 15 m·-1 ,则初速度大小为设v0与x 轴的夹角为,则123°41(2) 加速度的分量式为 , 则加速度的大小为设a 与x 轴的夹角为,则-33°41(或326°19)1 -9质点沿直线运动,加速度a4 -t2 ,式中a的单位为m·-2 ,t的单位为如果当t 3时,x9 m,v 2 m·-1 ,求质点的运动方程分析本题属于运动学第二类问题,即已知加速度求速度和运动方程,必须在给定条件下用积分方法解决由和可得和如aa(t)或v v(t),则可两边直接积分如果a 或v不是时间
9、t 的显函数,则应经过诸如分离变量或变量代换等数学操作后再做积分解由分析知,应有得 (1)由 得 (2)将t3时,x9 m,v2 m·-1代入(1)、(2)得v0-1 m·-1, x00.75 m于是可得质点运动方程为1 -10一石子从空中由静止下落,由于空气阻力,石子并非作自由落体运动,现测得其加速度aA -Bv,式中A、B 为正恒量,求石子下落的速度和运动方程解选取石子下落方向为y 轴正向,下落起点为坐标原点(1) 由题意知 (1)用分离变量法把式(1)改写为 (2)将式(2)两边积分并考虑初始条件,有得石子速度 由此可知当,t时,为一常量,通常称为极限速度或收尾速度(
10、2) 再由并考虑初始条件有得石子运动方程1 -11一质点具有恒定加速度a 6i 4j,式中a的单位为m·-2 在t0时,其速度为零,位置矢量r0 10 mi求:(1) 在任意时刻的速度和位置矢量;(2) 质点在Oxy 平面上的轨迹方程,并画出轨迹的示意图题 1-11 图分析与上两题不同处在于质点作平面曲线运动,根据叠加原理,求解时需根据加速度的两个分量ax 和ay分别积分,从而得到运动方程r的两个分量式x(t)和y(t)由于本题中质点加速度为恒矢量,故两次积分后所得运动方程为固定形式,即和,两个分运动均为匀变速直线运动读者不妨自己验证一下解由加速度定义式,根据初始条件t0 0时v0
11、0,积分可得又由及初始条件t0 时,r0(10 m)i,积分可得由上述结果可得质点运动方程的分量式,即x 103t2y 2t2消去参数t,可得运动的轨迹方程3y 2x -20 m这是一个直线方程直线斜率,33°41轨迹如图所示1 -12质点在Oxy 平面内运动,其运动方程为r2.0ti (19.0 -2.0t2 )j,式中r 的单位为m,t的单位为s求:(1)质点的轨迹方程;(2) 在t11.0s 到t2 2.0s 时间内的平均速度;(3) t1 1.0时的速度及切向和法向加速度;(4) t 1.0s 时质点所在处轨道的曲率半径分析根据运动方程可直接写出其分量式x x(t)和y y(
12、t),从中消去参数t,即得质点的轨迹方程平均速度是反映质点在一段时间内位置的变化率,即,它与时间间隔t 的大小有关,当t0 时,平均速度的极限即瞬时速度切向和法向加速度是指在自然坐标下的分矢量a 和an ,前者只反映质点在切线方向速度大小的变化率,即,后者只反映质点速度方向的变化,它可由总加速度a 和a 得到在求得t1 时刻质点的速度和法向加速度的大小后,可由公式求解(1) 由参数方程x 2.0t,y 19.0-2.0t2消去t 得质点的轨迹方程:y 19.0 -0.50x2 (2) 在t1 1.00 到t2 2.0时间内的平均速度(3) 质点在任意时刻的速度和加速度分别为则t1 1.00时的
13、速度v(t)t 12.0i -4.0j切向和法向加速度分别为(4) t 1.0质点的速度大小为则1 -15如图所示,从山坡底端将小球抛出,已知该山坡有恒定倾角,球的抛射角,设球被抛出时的速率v0 19.6 m·-1,忽略空气阻力,问球落在山坡上处离山坡底端的距离为多少?此过程经历多长时间?题 1-15 图分析 求解方法与上题类似,但本题可将运动按两种方式分解,如图(a)和图(b)所示.在图(a)坐标系中,两个分运动均为匀减速直线运动,加速度大小分别为-g 和-g ,看似复杂,但求解本题确较方便,因为落地时有y=0,对应的时间t和x的值即为本题所求.在图(b)坐标系中,分运动看似简单,
14、但求解本题还需将落地点P的坐标y与x的关系列出来.解 1 由分析知,在图(a)坐标系中,有 (1) (2)落地时,有y=0,由式(2)解得飞行时间为s将 t 值代入式(1),得m解 2 由分析知,在图(b)坐标系中,对小球 (1) (2)对点P (3)由式(1)、(2)可得球的轨道方程为 (4)落地时,应有,即解之得落地点P的x坐标为 (5)则 m联解式(1)和式(5)可得飞行时间 s讨论 比较两种解法,你对如何灵活运用叠加原理有什么体会?1 -16一质点沿半径为R 的圆周按规律运动,v0 、b 都是常量(1) 求t 时刻质点的总加速度;(2) t 为何值时总加速度在数值上等于b?(3) 当加
15、速度达到b 时,质点已沿圆周运行了多少圈?分析在自然坐标中,s 表示圆周上从某一点开始的曲线坐标由给定的运动方程s s(t),对时间t 求一阶、二阶导数,即是沿曲线运动的速度v 和加速度的切向分量a,而加速度的法向分量为anv2 /R这样,总加速度为a aeanen至于质点在t 时间内通过的路程,即为曲线坐标的改变量sst -s0因圆周长为2R,质点所转过的圈数自然可求得解(1) 质点作圆周运动的速率为其加速度的切向分量和法向分量分别为, 故加速度的大小为其方向与切线之间的夹角为(2) 要使ab,由可得(3) 从t0 开始到tv0 /b 时,质点经过的路程为因此质点运行的圈数为1 -18一质点
16、在半径为0.10 m的圆周上运动,其角位置为,式中 的单位为rad,t 的单位为(1) 求在t 2.0时质点的法向加速度和切向加速度(2) 当切向加速度的大小恰等于总加速度大小的一半时, 值为多少?(3) t 为多少时,法向加速度和切向加速度的值相等?分析掌握角量与线量、角位移方程与位矢方程的对应关系,应用运动学求解的方法即可得到解(1) 由于,则角速度在t 2 时,法向加速度和切向加速度的数值分别为(2) 当时,有,即得 此时刻的角位置为(3) 要使,则有t 0.55第二章牛顿定律2 -1如图(a)所示,质量为m 的物体用平行于斜面的细线联结置于光滑的斜面上,若斜面向左方作加速运动,当物体刚
17、脱离斜面时,它的加速度的大小为()(A) gsin (B) gcos (C) gtan (D) gcot 分析与解当物体离开斜面瞬间,斜面对物体的支持力消失为零,物体在绳子拉力F (其方向仍可认为平行于斜面)和重力作用下产生平行水平面向左的加速度a,如图(b)所示,由其可解得合外力为mgcot ,故选(D)求解的关键是正确分析物体刚离开斜面瞬间的物体受力情况和状态特征 2 -2用水平力FN把一个物体压着靠在粗糙的竖直墙面上保持静止当FN逐渐增大时,物体所受的静摩擦力Ff的大小()(A) 不为零,但保持不变(B) 随FN成正比地增大(C) 开始随FN增大,达到某一最大值后,就保持不变(D) 无法
18、确定分析与解与滑动摩擦力不同的是,静摩擦力可在零与最大值FN范围内取值当FN增加时,静摩擦力可取的最大值成正比增加,但具体大小则取决于被作用物体的运动状态由题意知,物体一直保持静止状态,故静摩擦力与重力大小相等,方向相反,并保持不变,故选(A)2 -3一段路面水平的公路,转弯处轨道半径为R,汽车轮胎与路面间的摩擦因数为,要使汽车不至于发生侧向打滑,汽车在该处的行驶速率()(A) 不得小于(B) 必须等于(C) 不得大于 (D) 还应由汽车的质量m 决定分析与解由题意知,汽车应在水平面内作匀速率圆周运动,为保证汽车转弯时不侧向打滑,所需向心力只能由路面与轮胎间的静摩擦力提供,能够提供的最大向心力
19、应为FN由此可算得汽车转弯的最大速率应为vRg因此只要汽车转弯时的实际速率不大于此值,均能保证不侧向打滑应选(C)2 -4一物体沿固定圆弧形光滑轨道由静止下滑,在下滑过程中,则()(A) 它的加速度方向永远指向圆心,其速率保持不变(B) 它受到的轨道的作用力的大小不断增加(C) 它受到的合外力大小变化,方向永远指向圆心(D) 它受到的合外力大小不变,其速率不断增加分析与解由图可知,物体在下滑过程中受到大小和方向不变的重力以及时刻指向圆轨道中心的轨道支持力FN作用,其合外力方向并非指向圆心,其大小和方向均与物体所在位置有关重力的切向分量(m gcos ) 使物体的速率将会不断增加(由机械能守恒亦
20、可判断),则物体作圆周运动的向心力(又称法向力)将不断增大,由轨道法向方向上的动力学方程可判断,随 角的不断增大过程,轨道支持力FN也将不断增大,由此可见应选(B)2 -6图示一斜面,倾角为,底边AB 长为l 2.1 m,质量为m 的物体从题2 -6 图斜面顶端由静止开始向下滑动,斜面的摩擦因数为0.14试问,当为何值时,物体在斜面上下滑的时间最短? 其数值为多少?分析动力学问题一般分为两类:(1) 已知物体受力求其运动情况;(2) 已知物体的运动情况来分析其所受的力当然,在一个具体题目中,这两类问题并无截然的界限,且都是以加速度作为中介,把动力学方程和运动学规律联系起来本题关键在列出动力学和
21、运动学方程后,解出倾角与时间的函数关系f(t),然后运用对t 求极值的方法即可得出数值来解取沿斜面为坐标轴Ox,原点O 位于斜面顶点,则由牛顿第二定律有 (1)又物体在斜面上作匀变速直线运动,故有则 (2)为使下滑的时间最短,可令,由式(2)有则可得 ,此时 2 -7工地上有一吊车,将甲、乙两块混凝土预制板吊起送至高空甲块质量为m1 2.00 ×102 kg,乙块质量为m2 1.00 ×102 kg设吊车、框架和钢丝绳的质量不计试求下述两种情况下,钢丝绳所受的张力以及乙块对甲块的作用力:(1) 两物块以10.0 m·-2 的加速度上升;(2) 两物块以1.0 m&
22、#183;-2 的加速度上升从本题的结果,你能体会到起吊重物时必须缓慢加速的道理吗?题 2-7 图分析预制板、吊车框架、钢丝等可视为一组物体处理动力学问题通常采用“隔离体”的方法,分析物体所受的各种作用力,在所选定的惯性系中列出它们各自的动力学方程根据连接体中物体的多少可列出相应数目的方程式结合各物体之间的相互作用和联系,可解决物体的运动或相互作用力解按题意,可分别取吊车(含甲、乙)和乙作为隔离体,画示力图,并取竖直向上为Oy 轴正方向(如图所示)当框架以加速度a 上升时,有F-( m1 m2 )g (m1 m2 )a (1)FN2 - m2 g m2 a (2)解上述方程,得F (m1 m2
23、 )(g a) (3)FN2 m2 (g a) (4)(1) 当整个装置以加速度a 10 m·-2 上升时,由式(3)可得绳所受张力的值为F 5.94 ×103 N乙对甲的作用力为FN2 -FN2 -m2 (g a) -1.98 ×103 N(2) 当整个装置以加速度a 1 m·-2 上升时,得绳张力的值为F 3.24 ×103 N此时,乙对甲的作用力则为FN2-1.08 ×103 N由上述计算可见,在起吊相同重量的物体时,由于起吊加速度不同,绳中所受张力也不同,加速度大,绳中张力也大因此,起吊重物时必须缓慢加速,以确保起吊过程的安全
24、2 -9质量为m的长平板A 以速度v在光滑平面上作直线运动,现将质量为m 的木块B 轻轻平稳地放在长平板上,板与木块之间的动摩擦因数为,求木块在长平板上滑行多远才能与板取得共同速度?分析当木块B 平稳地轻轻放至运动着的平板A 上时,木块的初速度可视为零,由于它与平板之间速度的差异而存在滑动摩擦力,该力将改变它们的运动状态根据牛顿定律可得到它们各自相对地面的加速度换以平板为参考系来分析,此时,木块以初速度-v(与平板运动速率大小相等、方向相反)作匀减速运动,其加速度为相对加速度,按运动学公式即可解得 该题也可应用第三章所讲述的系统的动能定理来解将平板与木块作为系统,该系统的动能由平板原有的动能变
25、为木块和平板一起运动的动能,而它们的共同速度可根据动量定理求得又因为系统内只有摩擦力作功,根据系统的动能定理,摩擦力的功应等于系统动能的增量木块相对平板移动的距离即可求出解1以地面为参考系,在摩擦力mg 的作用下,根据牛顿定律分别对木块、平板列出动力学方程mg ma1-ma2a1 和a2 分别是木块和木板相对地面参考系的加速度若以木板为参考系,木块相对平板的加速度a a1 a2 ,木块相对平板以初速度- v作匀减速运动直至最终停止由运动学规律有- v2 2as由上述各式可得木块相对于平板所移动的距离为解2以木块和平板为系统,它们之间一对摩擦力作的总功为式中l 为平板相对地面移动的距离由于系统在
26、水平方向上不受外力,当木块放至平板上时,根据动量守恒定律,有mv(mm) v由系统的动能定理,有由上述各式可得2 -10如图(a)所示,在一只半径为R 的半球形碗内,有一粒质量为m 的小钢球,当小球以角速度在水平面内沿碗内壁作匀速圆周运动时,它距碗底有多高?题 2-10 图分析维持钢球在水平面内作匀角速度转动时,必须使钢球受到一与向心加速度相对应的力(向心力),而该力是由碗内壁对球的支持力FN 的分力来提供的,由于支持力FN 始终垂直于碗内壁,所以支持力的大小和方向是随而变的取图示Oxy 坐标,列出动力学方程,即可求解钢球距碗底的高度解取钢球为隔离体,其受力分析如图(b)所示在图示坐标中列动力
27、学方程 (1) (2)且有 (3)由上述各式可解得钢球距碗底的高度为可见,h 随的变化而变化2 -13一质量为10 kg 的质点在力F 的作用下沿x 轴作直线运动,已知F 120t 40,式中F 的单位为N, t的单位的在t0时,质点位于x 5.0 m处,其速度v06.0 m·求质点在任意时刻的速度和位置分析这是在变力作用下的动力学问题由于力是时间的函数,而加速度adv/dt,这时,动力学方程就成为速度对时间的一阶微分方程,解此微分方程可得质点的速度v (t);由速度的定义vdx /dt,用积分的方法可求出质点的位置解因加速度adv/dt,在直线运动中,根据牛顿运动定律有依据质点运动
28、的初始条件,即t0 0 时v0 6.0 m·-1 ,运用分离变量法对上式积分,得v6.0+4.0t+6.0t2 又因vdx /dt,并由质点运动的初始条件:t0 0 时 x0 5.0 m,对上式分离变量后积分,有x 5.0+6.0t+2.0t2 +2.0t32 -17光滑的水平桌面上放置一半径为R 的固定圆环,物体紧贴环的内侧作圆周运动,其摩擦因数为,开始时物体的速率为v0 ,求:(1) t 时刻物体的速率;(2) 当物体速率从v0减少时,物体所经历的时间及经过的路程 题 2-17 图分析运动学与动力学之间的联系是以加速度为桥梁的,因而,可先分析动力学问题物体在作圆周运动的过程中,促
29、使其运动状态发生变化的是圆环内侧对物体的支持力FN 和环与物体之间的摩擦力F ,而摩擦力大小与正压力FN成正比,且FN与FN又是作用力与反作用力,这样,就可通过它们把切向和法向两个加速度联系起来了,从而可用运动学的积分关系式求解速率和路程解(1) 设物体质量为m,取图中所示的自然坐标,按牛顿定律,有由分析中可知,摩擦力的大小FFN ,由上述各式可得取初始条件t 0 时v v 0 ,并对上式进行积分,有(2) 当物体的速率从v 0 减少到时,由上式可得所需的时间为物体在这段时间内所经过的路程第三章动量守恒定律和能量守恒定律3 -1对质点组有以下几种说法:(1) 质点组总动量的改变与内力无关;(2
30、) 质点组总动能的改变与内力无关;(3) 质点组机械能的改变与保守内力无关下列对上述说法判断正确的是()(A) 只有(1)是正确的(B) (1)、(2)是正确的(C) (1)、(3)是正确的 (D) (2)、(3)是正确的分析与解在质点组中内力总是成对出现的,它们是作用力与反作用力由于一对内力的冲量恒为零,故内力不会改变质点组的总动量但由于相互有作用力的两个质点的位移大小以及位移与力的夹角一般不同,故一对内力所作功之和不一定为零,应作具体分析,如一对弹性内力的功的代数和一般为零,一对摩擦内力的功代数和一般不为零,对于保守内力来说,所作功能使质点组动能与势能相互转换,因此保守内力即使有可能改变质
31、点组的动能,但也不可能改变质点组的机械能综上所述(1)(3)说法是正确的故选(C)3 -2有两个倾角不同、高度相同、质量一样的斜面放在光滑的水平面上,斜面是光滑的,有两个一样的物块分别从这两个斜面的顶点由静止开始滑下,则()(A) 物块到达斜面底端时的动量相等(B) 物块到达斜面底端时动能相等(C) 物块和斜面(以及地球)组成的系统,机械能不守恒(D) 物块和斜面组成的系统水平方向上动量守恒分析与解对题述系统来说,由题意知并无外力和非保守内力作功,故系统机械能守恒物体在下滑过程中,一方面通过重力作功将势能转化为动能,另一方面通过物体与斜面之间的弹性内力作功将一部分能量转化为斜面的动能,其大小取
32、决其中一个内力所作功由于斜面倾角不同,故物体沿不同倾角斜面滑至底端时动能大小不等动量自然也就不等(动量方向也不同)故(A)(B)(C)三种说法均不正确至于说法(D)正确,是因为该系统动量虽不守恒(下滑前系统动量为零,下滑后物体与斜面动量的矢量和不可能为零由此可知,此时向上的地面支持力并不等于物体与斜面向下的重力),但在水平方向上并无外力,故系统在水平方向上分动量守恒3 -3对功的概念有以下几种说法:(1) 保守力作正功时,系统内相应的势能增加;(2) 质点运动经一闭合路径,保守力对质点作的功为零;(3) 作用力和反作用力大小相等、方向相反,所以两者所作功的代数和必为零下列上述说法中判断正确的是
33、()(A) (1)、(2)是正确的(B) (2)、(3)是正确的(C) 只有(2)是正确的(D) 只有(3)是正确的分析与解保守力作正功时,系统内相应势能应该减少由于保守力作功与路径无关,而只与始末位置有关,如质点环绕一周过程中,保守力在一段过程中作正功,在另一段过程中必然作负功,两者之和必为零至于一对作用力与反作用力分别作用于两个质点所作功之和未必为零(详见习题3 -2 分析),由此可见只有说法(2)正确,故选(C)3 -4如图所示,质量分别为m1 和m2 的物体A 和B,置于光滑桌面上,A 和B 之间连有一轻弹簧另有质量为m1 和m2 的物体C 和D 分别置于物体A 与B 之上,且物体A和
34、C、B 和D 之间的摩擦因数均不为零首先用外力沿水平方向相向推压A 和B,使弹簧被压缩,然后撤掉外力,则在A和B 弹开的过程中,对A、B、C、D 以及弹簧组成的系统,有()(A) 动量守恒,机械能守恒(B) 动量不守恒,机械能守恒(C) 动量不守恒,机械能不守恒 (D) 动量守恒,机械能不一定守恒分析与解由题意知,作用在题述系统上的合外力为零,故系统动量守恒,但机械能未必守恒,这取决于在A、B 弹开过程中C 与A 或D 与B 之间有无相对滑动,如有则必然会因摩擦内力作功,而使一部分机械能转化为热能,故选(D)3 -5如图所示,子弹射入放在水平光滑地面上静止的木块后而穿出以地面为参考系,下列说法
35、中正确的说法是()(A) 子弹减少的动能转变为木块的动能(B) 子弹-木块系统的机械能守恒(C) 子弹动能的减少等于子弹克服木块阻力所作的功(D) 子弹克服木块阻力所作的功等于这一过程中产生的热分析与解子弹-木块系统在子弹射入过程中,作用于系统的合外力为零,故系统动量守恒,但机械能并不守恒这是因为子弹与木块作用的一对内力所作功的代数和不为零(这是因为子弹对地位移大于木块对地位移所致),子弹动能的减少等于子弹克服阻力所作功,子弹减少的动能中,一部分通过其反作用力对木块作正功而转移为木块的动能,另一部分则转化为热能(大小就等于这一对内力所作功的代数和)综上所述,只有说法(C)的表述是完全正确的3
36、-6一架以3.0 ×10m·-1 的速率水平飞行的飞机,与一只身长为0.20 m、质量为0.50 kg 的飞鸟相碰设碰撞后飞鸟的尸体与飞机具有同样的速度,而原来飞鸟对于地面的速率甚小,可以忽略不计试估计飞鸟对飞机的冲击力(碰撞时间可用飞鸟身长被飞机速率相除来估算)根据本题的计算结果,你对于高速运动的物体(如飞机、汽车)与通常情况下不足以引起危害的物体(如飞鸟、小石子)相碰后会产生什么后果的问题有些什么体会?分析由于鸟与飞机之间的作用是一短暂时间内急剧变化的变力,直接应用牛顿定律解决受力问题是不可能的如果考虑力的时间累积效果,运用动量定理来分析,就可避免作用过程中的细节情况在
37、求鸟对飞机的冲力(常指在短暂时间内的平均力)时,由于飞机的状态(指动量)变化不知道,使计算也难以进行;这时,可将问题转化为讨论鸟的状态变化来分析其受力情况,并根据鸟与飞机作用的相互性(作用与反作用),问题就很简单了解以飞鸟为研究对象,取飞机运动方向为x 轴正向由动量定理得式中为飞机对鸟的平均冲力,而身长为20cm 的飞鸟与飞机碰撞时间约为t l /v,以此代入上式可得鸟对飞机的平均冲力为式中负号表示飞机受到的冲力与其飞行方向相反从计算结果可知,2.25 ×105 N的冲力大致相当于一个22 t 的物体所受的重力,可见,此冲力是相当大的若飞鸟与发动机叶片相碰,足以使发动机损坏,造成飞行
38、事故3 -7如图所示,质量为m 的物体,由水平面上点O 以初速为v0 抛出,v0与水平面成仰角若不计空气阻力,求:(1) 物体从发射点O 到最高点的过程中,重力的冲量;(2) 物体从发射点到落回至同一水平面的过程中,重力的冲量分析重力是恒力,因此,求其在一段时间内的冲量时,只需求出时间间隔即可由抛体运动规律可知,物体到达最高点的时间,物体从出发到落回至同一水平面所需的时间是到达最高点时间的两倍这样,按冲量的定义即可求得结果另一种解的方法是根据过程的始、末动量,由动量定理求出解1物体从出发到达最高点所需的时间为则物体落回地面的时间为于是,在相应的过程中重力的冲量分别为解2根据动量定理,物体由发射
39、点O 运动到点A、B 的过程中,重力的冲量分别为3 -8Fx 304t(式中Fx 的单位为N,t 的单位为s)的合外力作用在质量m10 kg 的物体上,试求:(1) 在开始2 内此力的冲量;(2) 若冲量I 300 N·s,此力作用的时间;(3) 若物体的初速度v1 10 m·s-1 ,方向与Fx相同,在t6.86 s时,此物体的速度v2 分析本题可由冲量的定义式,求变力的冲量,继而根据动量定理求物体的速度v2解(1) 由分析知(2) 由I 300 30t 2t2 ,解此方程可得t 6.86 s(另一解不合题意已舍去)(3) 由动量定理,有I m v2- m v1由(2)可
40、知t 6.86 s 时I 300 N·s ,将I、m 及v1代入可得3 -11一只质量的垒球以水平速率扔向打击手,球经球棒击出后,具有如图(a)所示的速度且大小,若球与棒的接触时间为0.025 s,求:(1)棒对该球平均作用力的大小;(2)垒球手至少对球作了多少功?分析 第(1)问可对垒球运用动量定理,既可根据动量定理的矢量式,用几何法求解,如图(b)所示;也可建立如图(a)所示的坐标系,用动量定量的分量式求解,对打击、碰撞一类作用时间很短的过程来说,物体的重力一般可略去不计.题 3-11 图解 (1) 解 1 由分析知,有其矢量关系如图(b)所示,则解之得 解 2 由图(a)有将(
41、2) 由质点动能定理,得3 -13A、B 两船在平静的湖面上平行逆向航行,当两船擦肩相遇时,两船各自向对方平稳地传递50 kg 的重物,结果是A 船停了下来,而B 船以3.4 m·s-1的速度继续向前驶去A、B 两船原有质量分别为0.5×103 kg 和1.0 ×103 kg,求在传递重物前两船的速度(忽略水对船的阻力)分析由于两船横向传递的速度可略去不计,则对搬出重物后的船A与从船B搬入的重物所组成的系统来讲,在水平方向上无外力作用,因此,它们相互作用的过程中应满足动量守恒;同样,对搬出重物后的船B与从船A搬入的重物所组成的系统亦是这样由此,分别列出系统、的动量
42、守恒方程即可解出结果解设A、B两船原有的速度分别以vA 、vB 表示,传递重物后船的速度分别以vA 、vB 表示,被搬运重物的质量以m 表示分别对上述系统、应用动量守恒定律,则有 (1) (2)由题意知vA 0, vB 3.4 m·s-1 代入数据后,可解得也可以选择不同的系统,例如,把A、B两船(包括传递的物体在内)视为系统,同样能满足动量守恒,也可列出相对应的方程求解3 -17 一质量为0.20 kg 的球,系在长为2.00 m 的细绳上,细绳的另一端系在天花板上把小球移至使细绳与竖直方向成30°角的位置,然后从静止放开求:(1) 在绳索从30°角到0
43、6;角的过程中,重力和张力所作的功;(2) 物体在最低位置时的动能和速率;(3) 在最低位置时的张力题 3-17 图分析(1) 在计算功时,首先应明确是什么力作功小球摆动过程中同时受到重力和张力作用重力是保守力,根据小球下落的距离,它的功很易求得;至于张力虽是一变力,但是,它的方向始终与小球运动方向垂直,根据功的矢量式,即能得出结果来(2) 在计算功的基础上,由动能定理直接能求出动能和速率(3) 在求最低点的张力时,可根据小球作圆周运动时的向心加速度由重力和张力提供来确定解(1) 如图所示,重力对小球所作的功只与始末位置有关,即在小球摆动过程中,张力F 的方向总是与运动方向垂直,所以,张力的功
44、(2) 根据动能定理,小球摆动过程中,其动能的增量是由于重力对它作功的结果初始时动能为零,因而,在最低位置时的动能为小球在最低位置的速率为(3) 当小球在最低位置时,由牛顿定律可得3 -18一质量为m 的质点,系在细绳的一端,绳的另一端固定在平面上此质点在粗糙水平面上作半径为r 的圆周运动设质点的最初速率是v0 当它运动一周时,其速率为v0 /2求:(1) 摩擦力作的功;(2) 动摩擦因数;(3) 在静止以前质点运动了多少圈?分析质点在运动过程中速度的减缓,意味着其动能减少;而减少的这部分动能则消耗在运动中克服摩擦力作功上由此,可依据动能定理列式解之解(1) 摩擦力作功为 (1)(2) 由于摩
45、擦力是一恒力,且F mg,故有 (2)由式(1)、(2)可得动摩擦因数为(3) 由于一周中损失的动能为,则在静止前可运行的圈数为圈3 -20如图所示,一质量为m的木块静止在光滑水平面上,一质量为m/2的子弹沿水平方向以速率射入木块一段距离L(此时木块滑行距离恰为s)后留在木块内,求:(1)木块与子弹的共同速度v,此过程中木块和子弹的动能各变化了多少?(2)子弹与木块间的摩擦阻力对木块和子弹各作了多少功?(3)证明这一对摩擦阻力的所作功的代数和就等于其中一个摩擦阻力沿相对位移L所作的功.(4)证明这一对摩擦阻力所作功的代数和就等于子弹-木块系统总机械能的减少量(亦即转化为热的那部分能量).题 3
46、-20 图分析 对子弹-木块系统来说,满足动量守恒,但系统动能并不守恒,这是因为一对摩擦内力所做功的代数和并不为零,其中摩擦阻力对木块作正功,其反作用力对子弹作负功,后者功的数值大于前者,通过这一对作用力与反作用力所做功,子弹将一部分动能转移给木块,而另一部分却转化为物体内能.本题(3)、(4)两问给出了具有普遍意义的结论,可帮助读者以后分析此类问题.解 (1)子弹-木块系统满足动量守恒,有解得共同速度对木块 对子弹 (2) 对木块和子弹分别运用质点动能定理,则对木块 对子弹 (3) 设摩擦阻力大小为,在两者取得共同速度时,木块对地位移为s,则子弹对地位移为L+s,有对木块 对子弹 得 式中L
47、即为子弹对木块的相对位移,“-”号表示这一对摩擦阻力(非保守力)所作功必定会使系统机械能减少.(4) 对木块 对子弹 两式相加,得 即 两式相加后实为子弹-木块系统作为质点系的动能定理表达式,左边为一对内力所作功,右边为系统动能的变化量.3 -23如图(a)所示,天文观测台有一半径为R 的半球形屋面,有一冰块从光滑屋面的最高点由静止沿屋面滑下,若摩擦力略去不计求此冰块离开屋面的位置以及在该位置的速度题 3-23 图分析取冰块、屋面和地球为系统,由于屋面对冰块的支持力FN始终与冰块运动的方向垂直,故支持力不作功;而重力P又是保守内力,所以,系统的机械能守恒但是,仅有一个机械能守恒方程不能解出速度
48、和位置两个物理量;因此,还需设法根据冰块在脱离屋面时支持力为零这一条件,由牛顿定律列出冰块沿径向的动力学方程求解上述两方程即可得出结果解由系统的机械能守恒,有 (1)根据牛顿定律,冰块沿径向的动力学方程为 (2)冰块脱离球面时,支持力FN 0,由式(1)、(2)可得冰块的角位置冰块此时的速率为v 的方向与重力P 方向的夹角为90° - 41.8°3 -25如图所示,质量为m、速度为v 的钢球,射向质量为m的靶,靶中心有一小孔,内有劲度系数为k 的弹簧,此靶最初处于静止状态,但可在水平面上作无摩擦滑动求子弹射入靶内弹簧后,弹簧的最大压缩距离题 3-25 图分析这也是一种碰撞问
49、题碰撞的全过程是指小球刚与弹簧接触直至弹簧被压缩到最大,小球与靶刚好到达共同速度为止,在这过程中,小球和靶组成的系统在水平方向不受外力作用,外力的冲量为零,因此,在此方向动量守恒但是,仅靠动量守恒定律还不能求出结果来又考虑到无外力对系统作功,系统无非保守内力作功,故系统的机械能也守恒应用上述两个守恒定律,并考虑到球与靶具有相同速度时,弹簧被压缩量最大这一条件,即可求解应用守恒定律求解,可免除碰撞中的许多细节问题解设弹簧的最大压缩量为x0 小球与靶共同运动的速度为v1 由动量守恒定律,有 (1)又由机械能守恒定律,有 (2)由式(1)、(2)可得3 -26质量为m 的弹丸A,穿过如图所示的摆锤B
50、后,速率由v 减少到v /2已知摆锤的质量为m,摆线长度为l,如果摆锤能在垂直平面内完成一个完全的圆周运动,弹丸速度v的最小值应为多少?题 3-26 图分析该题可分两个过程分析首先是弹丸穿越摆锤的过程就弹丸与摆锤所组成的系统而言,由于穿越过程的时间很短,重力和的张力在水平方向的冲量远小于冲击力的冲量,因此,可认为系统在水平方向不受外力的冲量作用,系统在该方向上满足动量守恒摆锤在碰撞中获得了一定的速度,因而具有一定的动能,为使摆锤能在垂直平面内作圆周运动,必须使摆锤在最高点处有确定的速率,该速率可由其本身的重力提供圆周运动所需的向心力来确定;与此同时,摆锤在作圆周运动过程中,摆锤与地球组成的系统
51、满足机械能守恒定律,根据两守恒定律即可解出结果解由水平方向的动量守恒定律,有 (1)为使摆锤恰好能在垂直平面内作圆周运动,在最高点时,摆线中的张力F0,则 (2)式中vh 为摆锤在圆周最高点的运动速率又摆锤在垂直平面内作圆周运动的过程中,满足机械能守恒定律,故有 (3)解上述三个方程,可得弹丸所需速率的最小值为第四章刚体的转动41有两个力作用在一个有固定转轴的刚体上:(1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3)当这两个力的合力为零时,它们对轴的合力矩也一定是零;(4)当这两个力对轴的合力矩为零时,它们的合力也一定是零对上述说法下述判断正确的是()(A)只有(1)是正确的(B)(1)、(2)正确,(3)、(4)错误(C) (1)、(2)、(3)都正确,(4)错误 (D)(1)、(2)、(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025私营企业劳动合同书 劳动合同
- 2025电缆供应合同模板
- 2025汽车销售合同大全
- 2025年网络设备采购合同
- 二次结构工程施工承包合同书模板二零二五年
- 二零二五领队出团合约
- 艺人代言合同
- 2025年签订的二手房合同是否有效
- 2025专业深圳合同范本
- 2025解析山东省商品供销合同范本
- 【MOOC】跨文化交际入门-华中师范大学 中国大学慕课MOOC答案
- 小学语文整本书阅读《没头脑和不高兴》导读课件
- 论语子路篇-论语子路篇讲解课件
- 咯血-护理查房课件
- 公路工程施工现场安全检查手册
- 黄河上游历史大洪水市公开课金奖市赛课一等奖课件
- 激光跟踪仪使用手册
- 货物采购服务方案
- 图纸答疑格式
- DB11-T 1322.64-2019 安全生产等级评定技术规范 第64部分:城镇供水厂
- 《普通生物学教案》word版
评论
0/150
提交评论