毕业设计 分离乙醇—水板式精馏塔设计设计说明书_第1页
毕业设计 分离乙醇—水板式精馏塔设计设计说明书_第2页
毕业设计 分离乙醇—水板式精馏塔设计设计说明书_第3页
毕业设计 分离乙醇—水板式精馏塔设计设计说明书_第4页
毕业设计 分离乙醇—水板式精馏塔设计设计说明书_第5页
已阅读5页,还剩62页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、分离乙醇水板式精馏塔设计- 1 -课课 程程 设设 计计 课程名称: 化化 工工 原原 理理 题目名称: 分离乙醇分离乙醇水板式精馏塔设计水板式精馏塔设计 学生学院: 轻 工 化 工 学 院 专业班级: 学生学号: 学生姓名: 指导教师: 2010 年 6 月 20 日1.设计任务.52.工艺流程图.83.设计方案.8分离乙醇水板式精馏塔设计- 2 -3.1 设计方案的确定 .83.1.1 塔型的选择 .83.1.2 操作压力 .83.1.3 进料方式 .93.1.4 加热方式 .93.1.5 热能的利用 .93.1.6 回流方式 .103.2 实验方案的说明 .104、板式塔的工艺计算.11

2、4.1 物料衡算 .114.2 最小回流比 rmin和操作回流比 r 的确定 .124.3 操作线的确定 .144.3.1 精馏段操作曲线方程 .144.3.2 提馏段操作曲线方程 .144.4 确定理论板层数 nt.154.5 确定全塔效率 et和实际塔板层数 np.154.5.1 相对挥发度 .154.5.2 物系黏度 .164.5.3 全塔效率和实际塔板数 .164.6 操作压强的计算 .174.7 平均分子量的计算 .184.8 平均密度的计算 .184.9 表面张力的计算 .204.10 平均流量的计算 .215、塔体和塔板的工艺尺寸计算.225.1 塔径 .225.2 溢流装置 .

3、255.3 塔板布置及筛板塔的主要结构参数 .305.4 塔板流体力学验算 .325.4.1 塔板阻力 hp.325.4.2 降液管泡沫层高度 .345.4.3 液体在降液管内的停留时间 .35分离乙醇水板式精馏塔设计- 3 -5.4.4 雾沫夹带量校核 .355.4.5 漏液点 .375.5 操作负荷性能图 .385.6 设计结果 .436、辅助设备的计算与选型.456.1 料液储罐的选型 .456.2 换热器的选型 .466.2.1 预热器 .476.2.2 再沸器 .486.2.3 全凝器热负荷及冷却水消耗量 .496.2.4 产品冷却器 .506.3 各接管尺寸的确定 .516.3.1

4、 进料管 .516.3.2 釜残液出料管 .516.3.3 回流液管 .516.3.4 塔顶上升蒸汽管 .526.3.5 水蒸汽进口管 .526.4 塔高 .536.5 法兰 .546.6 人孔 .566.7 视镜 .566.8 塔顶吊柱 .566.9 泵的计算及选型 .577、经济横算.587.1 成产成本 .587.2 水蒸汽费用 cs.587.3 冷却水费用 cw.587.4 设备投资费 cd.597.5 总费用 .597.6 利润 .598 心得体会 .60符号说明:符号说明:英文字母英文字母分离乙醇水板式精馏塔设计- 4 -aa- 塔板的开孔区面积,m2af- 降液管的截面积, m2

5、ao- 筛孔区面积, m2 at-塔的截面积 m2pp-气体通过每层筛板的压降c-负荷因子 无因次t-筛孔的中心距c20-表面张力为 20mn/m 的负荷因子do-筛孔直径 uo-液体通过降液管底隙的速度d-塔径 mwc-边缘无效区宽度ev-液沫夹带量 kg 液/kg 气wd-弓形降液管的宽度et-总板效率ws-破沫区宽度r-回流比rmin-最小回流比 m-平均摩尔质量 kg/kmoltm-平均温度 g-重力加速度 9.81m/s2z-板式塔的有效高度fo-筛孔气相动能因子 kg1/2/(s.m1/2)hl-进口堰与降液管间的水平距离 m-液体在降液管内停留时间hc-与干板压降相当的液柱高度

6、m-粘度hd-与液体流过降液管的压降相当的液注高度 m-密度hf-塔板上鼓层高度 m-表面张力hl-板上清液层高度 m-液体密度校正系数h1-与板上液层阻力相当的液注高度 m下标ho-降液管的义底隙高度 mmax-最大的how-堰上液层高度 mmin-最小的hw-出口堰高度 ml-液相的hw-进口堰高度 mv-气相的h-与克服表面张力的压降相当的液注高度 mh-板式塔高度 mhb-塔底空间高度 mhd-降液管内清液层高度 mhd-塔顶空间高度 mhf-进料板处塔板间距 mhp-人孔处塔板间距 mht-塔板间距 mh1-封头高度 mh2-裙座高度 mk-稳定系数lw-堰长 mlh-液体体积流量

7、m3/hls-液体体积流量 m3/sn-筛孔数目 p-操作压力 kpa分离乙醇水板式精馏塔设计- 5 -p-压力降 kpapp-气体通过每层筛的压降 kpat-理论板层数u-空塔气速 m/su0,min-漏夜点气速 m/suo -液体通过降液管底隙的速度 m/svh-气体体积流量 m3/hvs-气体体积流量 m3/swc-边缘无效区宽度 mwd-弓形降液管宽度 mws -破沫区宽度 mz - 板式塔的有效高度 m 希腊字母希腊字母-筛板的厚度 m-液体在降液管内停留的时间 s-粘度 mpa.s-密度 kg/m3-表面张力 n/m-开孔率 无因次-质量分率 无因次 下标下标max- 最大的min

8、 - 最小的l- 液相的v- 气相的 1.分离乙醇水板式精馏塔设计- 6 -设计任务设计任务1.1 题目:分离乙醇水板式塔精馏塔设计1.2 生产原始数据:1)原料:乙醇水混合物,含乙醇 35%(质量分数) ,温度35;2)产品:馏出液含乙醇 93%(质量分数) ,温度 38,残液中含酒精浓度0.5%;3)生产能力:原料液处理量 55000t年,每年实际生产天数330t,一年中有一个月检修;4)热源条件:加热蒸汽为饱和蒸汽,其表压为 2.5kgf/cm2;5)当地冷却水水温 25;6)操作压力:常压 101.325kpa;1.3 设计任务及要求1)设计方案的选定,包括塔型的选择及操作条件确定等;

9、2)确定该精馏的流程,绘出带控制点的生产工艺流程图,标明所需的设备、管线及其有关观测或控制所必需的仪表和装置;3)精馏塔的有关工艺计算 计算产品量、釜残液量及其组成; 最小回流比及操作回流比的确定; 计算所需理论塔板层数及实际板层数;分离乙醇水板式精馏塔设计- 7 - 确定进料板位置。1.4 塔主体尺寸的计算(塔径)1.5 塔板结构尺寸的设计1.6 流体力学验算1.7 画出负荷性能图1.8 辅助设备的选型1)确定各接管尺寸的大小;2)计算储罐容积,确定储罐规格;3)热量衡算,计算全塔装置所用蒸汽量和冷却水用量,确定每个换热器的传热面积并进行选型;4)根据伯努利方程,计算扬程,确定泵的规格类型;

10、5)壁厚,法兰,封头,吊柱等的选定。1.9 设计结果汇总分离乙醇水板式精馏塔设计- 8 -2.工艺流程图工艺流程图附图 1 为带控制点的工艺流程图。流程概要;乙醇水混合原料经预热器加热到泡点后,送进精馏塔,塔顶上升的蒸汽采用全凝器冷凝后,一部分采用回流,其余为塔顶产物,塔釜采用间接蒸汽加热供热,塔底产物冷却后送人贮槽。3.设计方案设计方案3.1 设计方案的确定3.1.1 塔型的选择筛板塔板上开有许多均布的筛孔,孔径一般为 38mm,筛孔在塔板上作正三角形排布。筛板塔的优点是:结构简单,造价低廉,气压降小,板上液面落差也较小,生产能力及板效率较高,气流分布均匀,传质系数高;缺点:操作弹性小,筛孔

11、小易发生堵塞,不利于黏度较大的体系分离。本设计中,根据生产任务,若按年工作日 330 天,每天开动设备 24 小时计算,原料液流量为 55000t年,由于产品粘度较小,流量较大,因此即使筛孔小也不易堵塞,为减少造价,降低生产过程中压降和塔板液面落差的影响,提高生产效率。因此,本设计最终选用筛板塔。3.1.2 操作压力精馏可在常压、加压和减压下进行,确定操作压力主要是根据处理物料的性质、技术上的可行性和经济上的合理性考虑的。化工原理修订版下册,夏清编分离乙醇水板式精馏塔设计- 9 -一般来说,常压蒸馏最为简单经济,若物料无特殊要求,应尽量在常压下操作。对于乙醇水体系,在常压下已经是液态,且乙醇水

12、不是热敏性材料,在常压下也可成功分离,所以选用常压精馏。因为高压或者真空操作会引起操作上的其他问题以及设备费用的增加,尤其是真空操作不仅需要增加真空设备的投资和操作费用,而且由于真空下气体体积增大,需要的塔径增加,因此塔设备费用增加。因此,本设计选择常压操作条件。3.1.3 进料方式进料状态有多种,但一般都将料液预热到泡点或接近泡点才送入塔中。这样一来,进料温度就不受季节、气温变化和前道工序波动的影响,塔的操作就比较容易控制。此外,泡点进料时,精馏段与提馏段的塔径相同,设计制造均比较方便。因此,本设计选择泡点进料。3.1.4 加热方式精馏段通常设置再沸器,采用间接蒸汽加热,以提供足够的热量。若

13、待分离的物系为某种组分和水的混合物,往往可以采用直接蒸汽加热的方式。但当在塔顶轻组分回收率一定时,由于蒸汽冷凝水的稀释作用,可使得釜残液中的轻组分浓度降低,所需的理论塔板数略有增加,且物系在操作温度下黏度不大有利于间接蒸汽加热。因此,本设计选用间接蒸汽加热的方式提供热量。3.1.5 热能的利用精馏的原理是多次进行部分汽化和冷凝,因此,热效率很低,通常进入再沸器的能量仅有 5%被有效的利用。塔顶蒸气冷凝放出常用化工单元设备设计第二版,李功样编分离乙醇水板式精馏塔设计- 10 -大量的热量,但其位能低,不可能直接用来作塔釜的热源。但可作低温热源,或通入废热锅炉产生低压蒸气,供别处使用。或可采用热泵

14、技术,提高温度再用于加热釜液。采用釜液产品去预热原料,可以充分利用釜液产品的余热,节约能源。因此本设计利用釜残液的余热预热原料液至泡点。3.1.6 回流方式泡点回流易于控制,设计和控制时比较方便,而且可以节约能源。但由于实验中的设计需要,所需的全凝器容积较大须安装在地面,因此回流至塔顶的回流液温度稍有降低,在本设计中为设计和计算方便,暂时忽略其温度的波动。因此,本设计选用泡点回流。3.2 实验方案的说明1)本精馏装置利用高温的釜液与进料液作热交换,同时完成进料液的预热和釜液的冷却,经过热量与物料衡算,设想合理。釜液完全可以把进料液加热到泡点,且低温的釜液直接排放也不会造成热污染。2)原料液经预

15、热器加热后先通过离心泵送往高位槽,再通过阀门和转子流量计控制流量使其满足工艺要求。3)本流程采用间接蒸汽加热,使用 25水作为冷却剂,通入全凝器和冷却器对塔顶蒸汽进行冷凝和冷却。从预热器、全凝器、冷却器出来的液体温度分别在 50-60、40和35左右,可以用于民用热澡水系统或输往锅炉制备热蒸汽的重复利用。4)本设计的多数接管管径取大,为了能使塔有一定操作弹性,允许气体液体流量增大,所以采取大于工艺尺寸所需的管径。常用化工单元设备设计第二版,李功样编,p85分离乙醇水板式精馏塔设计- 11 -4、板式塔的工艺计算、板式塔的工艺计算4.1 物料衡算通过全塔物料横算,可以求出精馏产品的流量、组成和进

16、料流量、组成之间的关系。1、将各个质量分数转化为摩尔分数2、各个相对摩尔质量kmolkgmf/84.27%6518%3546kmolkgmd/534.41%718%9346kmolkgmw/08.18%5 .9918%5 . 0463、各个摩尔流量由年处理量 55000t,330 天有效工作日,可得进料液流量 f为hkmolf/44.24984.272433010550003由物料衡算式可算出产品流量 d 和釜残液流量 wfwdfxwxdxfwd代入得)44.249(001962. 08386. 0174. 044.24944.249dddw解得:hkmolwhkmold/15.198/29.

17、518386. 018746934693dx001962. 0185 .99465 . 0465 . 0wx1740. 0186546354635fx分离乙醇水板式精馏塔设计- 12 -由此可查得原料液,塔顶和塔底混合物的沸点,以上计算结果见表表 1 原料液、馏出液与釜残液的流量与温度名称原料液(f)馏出液(d)釜残液(w)%/g35930.5(摩尔分数)x0.17400.83860.001962摩尔质量/kg kmol27.8441.53418.08沸点温度 /t8478.399.94.2 最小回流比 rmin 和操作回流比 r 的确定回流是保证精馏塔连续稳定操作的必要条件之一,且回流比是影

18、响精馏操作费用和投资费用的重要因素。对于一定的分离任务而言,应选择适宜的回流比。适宜的回流比应该通过经济核算来确定,即操作费用和设备折旧费用之和为最低时的回流比为最适宜的回流比。 mr适宜rr图 2 理论板和回流比关系图确定回流比的方法为:先求出最小回流比rmin,根据经验取操作回流比为最小回流比的1.12.0倍,为了节能,回流比倾向于取较小的值,有人建 n 分离乙醇水板式精馏塔设计- 13 -议取 rmin的 1.11.5 倍。考虑到原始数据和设计任化工原理修订版下册,夏清编务,本方案取 1.4,即:r1.4rmin;求最小回流比的方法有作图法和解析法,本设计使用作图法。根据附录表 2 乙醇

19、水溶液体系的平衡数据在坐标纸上绘出平衡曲线,并画出对角线。表 2 乙醇水溶液体系的平衡数据液相中乙醇的含量(摩尔分数)汽相中乙醇的含量(摩尔分数)液相中乙醇的含量(摩尔分数)汽相中乙醇的含量(摩尔分数)0.00.00.400.6140.0040.0530.450.6350.010.110.500.6570.020.1750.550.6780.040.2730.600.6980.060.340.650.7250.080.3920.700.7550.100.430.750.7850.140.4820.800.820.180.5130.850.8550.200.5250.8940.8940.250.

20、5510.900.8980.300.5750.950.9420.350.5951.01.0分离乙醇水板式精馏塔设计- 14 -某些不正常曲线,具有下凹的部分。当操作线与 q 线的交点尚未落到平衡线上之前,操作线已与平衡线相切。对于此种情况下 rmin的求法是由点(xd,xd)向平衡线做切线,再由切线的斜率或截距求 rmin。由于乙醇水溶液平衡曲线属于不平衡曲线,因此,过点 d(0.8386,0.8386)向平衡曲线做切线,读出与 y 轴的交点为(0,0.298) ,如附图 3 所示,然后由下式进行计算:54. 24 . 1814. 108386. 0298. 08386. 01minminmi

21、nminrrrrr分离乙醇水板式精馏塔设计- 15 -4.3 操作线的确定4.3.1 精馏段操作曲线方程7175. 0154. 254. 21237. 0154. 28386. 01rrrxd精馏段操作线方程:7175. 0237. 0 xy4.3.2 提馏段操作曲线方程dlr hkmoldlvhkmolrdl/57.18229.5128.130/28.13029.5154. 21q hkmolvv/57.182hkmolqfll/72.37944.24928.130提馏段操作线方程:001962. 029.5115.19857.18272.379xxdwxvlyw00758.008.2x化工

22、原理修订版下册,夏清编4.4 确定理论板层数 nt理论板层数的计分离乙醇水板式精馏塔设计- 16 -算方法有图解法、逐板计算法和简捷法。本设计方案中使用图解法,由于精馏段和提馏段操作曲线方程的确定,可在平衡曲线上做阶梯,所画出的阶梯数就是所需理论板层数 nt(包含再沸器) 。如附图 3 所示由图可知 nt=16,精馏段塔板层数 nt,=134.5 确定全塔效率 et和实际塔板层数 np塔板总效率与物系性质、塔板结构及操作条件都有密切的关系,由于影响因素很多,目前尚无精确的计算方法。目前,塔板效率的估算方法大体分为两类。一类是较全面的考虑各种传质和流体力学因素的影响,从点效率出发,逐步计算出全塔

23、效率;另一类是简化的经验计算法。奥康奈尔(o,connell)方法目前被认为是较好的简易方法。对于精馏塔,奥康奈尔法将总板效率对液相黏度与相对挥发度的乘积进行关联,表达式如下:245. 0)(49. 0lte对于多组分系统 l可按下式计算,即liilx液相任意组分 i 的黏度,mpas;li液相中任意组分 i 的摩尔分数。ix4.5.1 相对挥发度由附表 1 乙醇水溶液平衡曲线查得yd=0.849,yf=0.51,yw=0.02158塔顶相对挥发度08213. 1)8386. 01 (8386. 0)849. 01 (849. 0bdbddyxxy常用化工单元设备设计第二版,李功样编分离乙醇水

24、板式精馏塔设计- 17 -进料板相对挥发度941.4)1740.01(1740.0)51.01(51.0bfbffyxxy塔釜相对挥发度22.11)001962. 01 (001962. 0)02158. 01 (02158. 0bwbwwyxxy全塔平均相对挥发度915. 322.11941. 408213. 133wfd4.5.2 物系黏度由常压下乙醇-水溶液的温度组成 t-x-y 图可查得塔顶温度 td=78.3泡点进料温度 tf=84.0塔釜温度 tw=99.9全塔平均温度cttttwfd04 .873由液体的黏度共线图可查得 t=87.4下,乙醇的黏度l=0.38mpas,水的黏度

25、l =0.3269mpas 3269. 0)1740. 01 (38. 01740. 0liilx smpa336. 04.5.3 全塔效率和实际塔板数即全塔效率 et245. 0)(49. 0lte化工原理修订版下册,夏清编化工原理修订版上册,夏清编分离乙醇水板式精馏塔设计- 18 -4582. 0)336. 0915. 3(49. 0245. 0即实际塔板层数 np3374.324582. 01161ttpenn精馏段理论板层数 nt,=13,所以实际加料板位置为3037.2914582. 0131tmennt4.6 操作压强的计算因为常压下乙醇水是液态混合物,其沸点较低(小于 100),

26、且不是热敏性材料,采用常压精馏就可以成功分离。故塔顶压强: pd=101.3kpa,取每层压强降:kpap4 . 0塔底压强:kpapnpppdw5 .114334 . 03 .101进料板压强:kpapnppdf3 .113304 . 03 .101精全塔平均操作压强:kpapwppdm9 .10725 .1143 .1012精馏段平均操作压强:kpa3 .10723 .1013 .1132dfmppp提馏段平均操作压强:kpapppwfm9 .11325 .1143 .1132化工原理修订版下册,夏清编分离乙醇水板式精馏塔设计- 19 -4.7 平均分子量的计算1塔顶:=0.8386 0.

27、849dxdy气相0.84946(10.849)1841.77kg/kmolvdmm液相41.538kg/kmolldmm2进料:0.1740,= 0.51fxfy气相0.5146(10.51)1832.28kg/kmolvfmm液相27.84kg/kmollfmm塔釜:0.001962,0.02158wxwy气相0.0215846(10.02158)vwmm1818.60kg/kmol液相18.08kg/kmollwmm4精馏段平均分子量 (41.77+32.28)/2=37.08kg/kmolvmm(41.538+27.84)/2=34.69kg/kmollmm5提馏段平均分子量 (32.

28、28+18.60)/225.74kg/kmolvmm (27.84+18.08)/2=22.96kg/kmollmm4.8 平均密度的计算1液相平均密度塔顶 td=78.3,查得(液)0.9728g/cm3;水进料塔板 tf=84,查得(液)=0.9693g/cm3;水塔釜tw=99.9,查得(液)水=0.9584g/cm3;556. 08591. 0分离乙醇水板式精馏塔设计- 20 -化工原理修订版上册,夏清编不同温度下乙醇的密度可用方程式33062030010)(10)(10)(ttttttt查得当 t0=25时,乙醇的30/78506. 0cmg代入式中,求得在td=78.3时,=0.7

29、369 g/cm3ttf=84.0时, =0.7314g/cm3ttw=99.9时,=0.7155g/cm3t塔顶密度: 3/775. 0)8386. 01 (9729. 07369. 08386. 0cmgld进料密度: 3/9279. 0)174. 01 (9694. 07314. 0174. 0cmglf塔釜密度:3/9579. 0)001962. 01 (9584. 07155. 0001962. 0cmglw 精馏段液相平均密度:(775+927.9)/2=851.453/mkg提馏段液相平均密度:(927.9+957.9)/2=942.93/mkg2气相平均密度乙醇-水蒸汽在常压沸

30、腾温度下的密度(kg/m3)可通过查表得到,333/592. 0/785. 0/449. 1mkgmkgmkgvwvfvd精馏段气相平均密度:(1.449+0.785)/2=1.1173/mkg提馏段气相平均密度:(0.785+0.592)/2=0.68853/mkg物理化学实验,潘湛昌主编分离乙醇水板式精馏塔设计- 21 -常用化工单元设备设计第二版,李功样编4.9 表面张力的计算25时乙醇水溶液的表面张力可由图表面张力-乙醇质量分数关系图查得,而其他温度(t2)下的表面张力 2,可由已知温度(t1)下的表面张力 1,利用公式求出:2 . 11212ttttcc tc液体的临界温度,k;当混

31、合液的临界温度无法查到时,可采用下式估算:icimctxt其中乙醇的临界温度 tic=243=516.15k,水的临界温度tic=374.2=647.35k。1、塔顶:乙醇质量分数 93%,查得1=21mn/m,t1=298.15k,t2=351.45k, ktmcd35.53735.647)8386. 01 (15.5168386. 02.1215.29835.53745.35135.53721mmn /52.1522、进料:乙醇质量分数 35%,查得1=29.5mn/m,t1=298.15k,t2=357.15k,ktmcf52.62435.647)174. 01 (15.516174.

32、02 . 1215.29852.62415.35752.6245 .29mmn /22.2323、塔釜:常用化工单元设备设计第二版,分离乙醇水板式精馏塔设计- 22 -李功样编乙醇质量分数 0.5%,查得1=64mn/m,t1=298.15k,t2=373.05k,ktmcw09.64735.647)001962. 01 (15.516001962. 02 . 1215.29809.64705.37309.64764mmn /89.4724、精馏段平均表面张力:(精)=(15.52+23.22)/2=19.37mn/m5、提馏段平均表面张力:(提)=(23.22+47.89)/2=35.555

33、mn/m分离乙醇水板式精馏塔设计- 23 -4.10 平均流量的计算smvmvsmvmvhkmolvvhkmoldrvvmvmvmvm/8658. 136006885. 047.2557.181/674. 13600117. 108.3757.181/57.181/57.18129.51) 154. 2() 1(33提精精提精smlmlsmlmlhkmolqfrdlhkmolrdllmlmlmlm/10568. 236009 .94296.2272.379/10474. 1360045.85169.3428.130/72.37944.24928.130/28.13029.5154. 23333

34、提精提精分离乙醇水板式精馏塔设计- 24 -5、塔体和塔板的工艺尺寸计算、塔体和塔板的工艺尺寸计算5.1 塔径塔径可根据选定的适宜空塔速度,先利用下式进行估算uvds785.0对于精馏过程,精馏段与提馏段的气液负荷及物性是不相同的,故应分别计算出估算塔径;但若两者相差不大时,为制造方便,可取较大者作为两段塔径。计算步骤如下:1.求空塔气速 u(1)动能参数的计算精馏段: 0243. 0117. 145.851674. 1001474. 02121vlvl提馏段:05094. 06885. 09 .9428658. 1002568. 02121vlvl(2)初选板间距 ht=0.40m,对于常压

35、塔,板上液层高度一般取0.05-0.1m(通常取 0.05-0.08m) ,本设计中取板上液层高度hl=0.05m ht-hl=0.40-0.05=0.35m(3) 查附图 4,smith 关联图,得精馏段:073. 020c07253. 02037.19073. 0202 . 02 . 020cc常用化工单元设备设计第二版,李功样编分离乙醇水板式精馏塔设计- 25 -提馏段:0748. 020c08392. 020555.350748. 0202 . 02 . 020cc 图 4 史密斯关联图(4)求空塔气速适宜的空塔速度通常取最大允许空塔速度的 0.6-0.8 倍,即fuu)8 . 06

36、. 0(其中 vmvmlmfcu本设计中安全系数暂取 0.78精馏段:s /m001. 2117. 1117. 145.85107253. 0fu分离乙醇水板式精馏塔设计- 26 -则smu/561. 1001. 278. 0提馏段:s /m104. 36885. 06885. 09 .94208392. 0fu则smu/422. 2104. 378. 0(5)求估算塔径 d精馏段:muvds17.1561.1785.0674.1785.0提馏段:muvds991.0422.2785.0866.1785.0取较大者为精馏塔塔径,即 d=1.17m,圆整得到 d=1.2m塔的截面积:22213.

37、 12 . 144mdat实际空塔气速: 精馏段:74. 0001. 2482. 1/482. 113. 1674. 113. 1fsuusmvu实际安全系数提馏段:532. 0104. 3651. 1/651. 113. 1866. 113. 1fsuusmvu实际安全系数分离乙醇水板式精馏塔设计- 27 -在精馏段的安全系数满足 0.6-0.8 范围的情况下,提馏段也尽可能的接近 0.6,所以本设计中塔径和板间距的选取均合理。5.2 溢流装置板式塔的溢流装置包括溢流堰、降液管和受液盘等几部分,其结构和尺寸对塔的性能有很重要的影响。降液管的类型:降液管是塔板间流体流动的通道,也是使溢流液中所

38、夹带气体得以分离的场所。降液管有圆形和弓形两类。通常,圆形降液管用于小直径塔,而大直径塔一般用弓形降液管。降液管溢流方式:一般常用的有如下图 5 所示的几种类型,即(a)u 形流、 (b)单溢流(c)双溢流等。图 5 塔板溢流类型(a)u 形流、(b)单溢流(c)双溢流其中,单溢流又称直径流,液体自受液盘流分离乙醇水板式精馏塔设计- 28 -向溢流堰。液体流径长,塔板效率高,塔板结构简单,广泛应用于直径 2.2m 以下的塔中。化工原理课程设计指导书(筛板塔)选择何种降液方式要根据液体流量、塔径大小等条件综合考虑。附表 2 列出了溢流类型与液体负荷及塔径的经验关系,可供设计参考。表 3 液相负荷

39、、塔径与液流型式的关系液体流量 lh,m3/h塔径 d,mmu 形流单溢流双溢流1000140020003000400050007 以下9 以下11 以下11 以下11 以下11 以下45 以下70 以下90 以下110 以下110 以下110 以下90160110200110230110250lh=0.001474m3/s=5.30m3/h所以选择单溢流。受液盘上一般不设置进口堰,分离乙醇水板式精馏塔设计- 29 -进口堰既占面积,又易使沉淀物淤积此处造成阻塞。溢流堰的形式有平直形和齿形两种。设计时,堰上液层高度应大于 6mm,如果小于此值须采用齿形堰;堰上液层高度太大,会增大塔板压降及雾沫

40、夹带量。综上所述,堰流装置设计可选用单溢流,弓形降液管,不设进口堰,平形受液盘以及平形溢流堰。其塔板示意图 6 如下分离乙醇水板式精馏塔设计- 30 -图 6 塔板示意图各项计算如下:1.堰长 lw:堰长=(0.6-0.8)dwl取堰长 lw=0.661d=0.6611.2=0.794m2.出口堰高hw(1)液流收缩系数 e可近似取e=1,所引起的计算误分离乙醇水板式精馏塔设计- 31 -差对结果影响不大。(2)堰上液层高度:mllehwhow0101. 0794. 03600001474. 01100084. 2100084. 23232(3)堰高:mhhhowlw0399. 00101.

41、005. 0根据 0.10.05 ,验算:owhwhowh 0.10.01010.03990.050.0101 是成立的。3.弓形降液管高度 wd及降液管面积 af图 7 弓形的宽度与面积 用图 7 求取 wd及 af,因为661.0dlw 分离乙醇水板式精馏塔设计- 32 -由该图查得:,125.0dwd0722. 0tfaa213. 1mat20816. 013. 10722. 00722. 0maaffmd2.1mdwd15. 02 . 1125. 0125. 04.验算液体在降液管中停留时间slhastf1 .22001474. 040. 00816. 0保留时间 (3-5)s,故降液

42、管适用。5.降液管底隙高度 ho降液管底隙高度 ho可用下式计算0ullhwso液体通过降液管底隙的流速一般可取 0.070.25m/s,本设计取 uo=0.07m/s。则mullhwso0265. 007. 0794. 0001474. 00以免因堵塞而造成液泛,该值应不少于 2025mm,计算结果符合要求。 分离乙醇水板式精馏塔设计- 33 -5.3 塔板布置及筛板塔的主要结构参数(1) 、筛板布置塔板上在靠近塔壁的部分,应留出一圈边缘区,供塔板安装之用,通常边缘区宽度 wc为 5070mm。塔板上液体的入口和出口需设安定区。以避免大量含有气泡的液体进入降液管而造成液泛。一般,安定区的宽度

43、 ws可取 50100 mm。边缘区和安定区中的塔板不能开孔。wc=0.04m; ws=0.07m(2) 、筛孔的直径 d0,孔中心距 t,板厚筛孔直径的大小对塔板压降及塔板效率无显著影响;但随着孔径的增大,操作弹性减小(在开孔率、空塔气速及液流强度一定的情况下,若孔径增大,则漏液量和雾沫夹带量都随之增大,因此,孔径增大,操作下限上升,操作上限降低,导致操作弹性减少) 。此外,孔径大,不易堵塞;且孔径大,制造费用低。筛孔的排布一般为正三角形,筛孔直径为 0.003-0.008m,孔中心距与孔距之比常在 2.5-5 倍筛孔直径的范围内,实际设计时,t/d0宜尽可能在 3-4 的范围内。在确定开孔

44、区板厚时,对于不锈钢塔板的小孔直径 d0应小于(1.5-2)。一般碳钢的筛板的厚度为 0.003-0.004m,合金钢塔板的厚度为 0.002-0.0025m。综上所述,本设计选取 ;50mmd ,1356 . 2mmt)(5 . 2合金钢mm(3) 、开孔率在目前的工业生产中,对于常压或减压操作的筛板塔,开孔率应在 10%14%范围中。在本设计中常用化工单元设备设计第二版,李功样编134. 0)513(907. 0)(907. 02200dtaaa分离乙醇水板式精馏塔设计- 34 -式中,aa 为开孔面积,m2;a0为筛孔面积,m2。rxrxrxaa1222sin1802其中 mwwdxsd

45、38. 007. 015. 022 . 12mdr56. 004. 02所以28756. 0maa由得 134. 0201173. 08756. 0134. 0ma(4) 、孔数个59998756. 0131011581011582323aatn按 t=13mm 以正三角形叉排方式作图,见附图 8,排得孔数5980 个,按 n=5980 重新核算孔速及开孔率:smavu/3 .145980005. 04674. 1200134. 08756. 05980005. 0420aaa化工原理修订版下册,夏清编分离乙醇水板式精馏塔设计- 35 -开孔率变化不大,仍在 10%14%之间。5.4 塔板流体

46、力学验算塔的操作能否正常进行,与塔内气,液两相的流体力学状况有关。板式塔的流体力学性能包括:塔板压降、液泛、雾沫夹带、漏液及液面落差等。5.4.1 塔板阻力 hp气体通过塔板的压降 hp包括:干板压降 hc,板上充气液层阻力 hl以及克服液体表面张力的阻力 h,可表示为hp=hc+hl+h其中气体克服液体表面张力所造成的阻力通常很小,可以忽略不计。所以 lcphhh式中:hp气体通过每一层塔板的阻力,m 液柱; hc干板阻力,m 液柱;h1塔板上的液层阻力,m 液柱。筛孔塔板的干板可用下式计算。 lvccuh200051.0式中:筛孔气速,m/s;0u流量系数,可由附图 9 查得;0c分别为气

47、相和液相的密度,kg/m3。lv、分离乙醇水板式精馏塔设计- 36 -图 9 与0d/的关系0c查附图 9 ,得,即20d7635. 00c 液柱mcuhlvc023. 045.851117. 1)7635. 03 .14(051. 0)()(051. 02200板上充气液层阻力与通过筛孔的气体动能因子有关,)(00vuf可由附图 10 查得图 10 有效液层阻力 hl分离乙醇水板式精馏塔设计- 37 -由 88.16117. 13 .1400vuf查得 液柱mhl020. 0所以 mhhhlcp043. 0020. 0023. 0单板压降paghplpp35981.945.851043.0对

48、于一般气体通过每块常压和加压塔塔板的压降为 260-530pa,该设计方案中的单板压降为 359pa,在适宜的范围内。5.4.2 降液管泡沫层高度为了防止降液管液泛,应保证降液管内泡沫液层总高度不超过上层塔板的溢流堰顶,通常可通过求出的降液管内清液层高度hd是否满足 hd(ht+hw)来进行验算,即hd=hp+hw+how+hc(ht+hw) 为降液管中泡沫层的相对密度。对于一般物系,=0.5;对于发泡严重的物系,=0.30.4;对于不易发泡的物系,=0.60.7。本设计方案中取 =0.5。其中液体在降液管出口阻力:2153. 0owsdhllh(1) 、液体通过降压管损失因不设进口堰。所以:

49、 muhllhowsd4220210497. 707. 0153. 0153. 0153. 0(2) 、气体通过塔板间的压强降所相当的液柱高度 hp=0.043m(3) 、板上液层高度,前已选定 hl=0.05m(4) 、前面已定。则mhmhwt0399. 0,40. 0mhhwt21995. 0)0399. 040. 0(5 . 0)(化工原理修订版下册,夏清编分离乙醇水板式精馏塔设计- 38 -hd= hp+hw+how+hc=0.043+0.0399+0.0101+7.49710-4=0.0937m可见,符合防止降液管液泛要求。)(wtdhhh5.4.3 液体在降液管内的停留时间为避免严

50、重的气泡夹带使传质性能降低,液体通过降液管时应有足够的停留时间,以便释放出其中夹带的绝大部分气体。液体在降液管内的平均停留时间可由下式计算:stflha式中 ht塔板间距,m;af降液管面积,m2;ls液体流量,m3/s。通常要求液体在降液管内停留时间应大于 3s;对于易起泡物系则要求大于 7s。若求得的停留时间过小,可适当增加 af或ht。3sslhastf1 .22001474. 040. 00816. 0可见,该设计可使得液体所夹带气体释出。5.4.4 雾沫夹带量校核上升气流穿过塔板上液层时,将板上液体带入上层塔板的现象称为雾沫夹带。雾沫的生成固然可增加大气、液体两相的传质面积,但过量的

51、雾沫夹带造成液相在塔板间的返混,严重的话会造成雾沫夹带液泛,从而导致塔板效率严重下降。所谓返混是指雾沫夹带的液滴与液体主流做相反方向流动的现象。为保证板式塔能维持正常的操作效果,生产中将雾沫夹带限制在一定的限度以内,规定每1kg 上升气体夹带到上层塔板的液体量不超过0.1kg,即控制雾沫夹带量ev0.1kg(液)/kg(气)。用泛点百分率关分离乙醇水板式精馏塔设计- 39 -联法先求 uf化工原理修订版下册,夏清编vvlfcu0243. 021vlvl由附图 4史密斯关联图,查得073. 020c若液相的表面张力不等于20dyn/cm,可按下式校正2 . 020)20(cc 规定塔板开孔率10

52、%时,=1;分离乙醇水板式精馏塔设计- 40 -若 小于 10%,查得的 c20须乘以 值进行校正。=0.08,=0.9;=0.06,=0.8。本方案中 =13.4%10%,所以 =1。因为;mmn /37.19 校正 0725. 02037.19073. 02 . 020csmuf/0 . 2117. 1117. 145.8510725. 0操作气速:smaavuft/065. 10816. 013. 1674. 1精液泛分率:5325. 00 . 2065. 1fuu查附图 11 雾沫夹带分率图得:032. 0化工原理课程设计指导书(筛板塔)图11 雾沫夹带分率气液 kgkgvlev/02

53、2. 008.3757.181032. 01032. 069.3428.130111分离乙醇水板式精馏塔设计- 41 -ev0.1kg 液/kg 气条件成立。5.4.5 漏液点正常操作时,液体应横贯塔板,在与气体进行充分接触传质后流入降液管。但有少量液体会由筛孔漏下。这少量漏下的液体如同“短路”,传质不充分,故操作中应尽可能减少漏液。当液体流量一定,气体流量降到一定程度时漏液量会明显增多。一般将漏液量明显增多时的空塔气速称为在该液体流量下的漏液点空速 uom,由于人们对漏液点判别的定量指标不同,所以不同研究者提出的计算漏液点的经验式亦不同。当孔速低于漏液点气速时,大量液体从筛孔漏液,这将严重影

54、响塔板效率。因此,漏液点气速为下限气速,筛孔漏液点气速按下式计算:vllomhhcu13.00056.04.420其中098104dhl,c20=0.7635液柱mh310855. 1005. 045.851981037.194smuom/39. 9117. 145.8511085. 105. 013. 00056. 07635. 04 . 43 实际筛孔气速 uo分离乙醇水板式精馏塔设计- 42 -与漏液点筛孔气速 uom之比称为稳定系数 f,omuuf 一般情况下,f 值应大于 1,宜在 1.52.0 以上,使塔的操作可有较大弹性。523.139.93.14omuuf故在本设计中无明显漏液

55、。5.5 操作负荷性能图影响板式塔操作状况和分离效果的主要因素为物料性质、塔板结构及气、液负荷。对一定的塔板结构,处理指定的物系时,其操作状况只随气、液负荷的改变。要维持塔板正常操作必须将塔内的气、液负荷限制在一定范围内波动。通常在直角坐标系中,以气相负荷 v 对液相负荷 l 标绘出各种极限条件下的 v-l 关系曲线,从而得到塔板的适宜气、液流量范围图形,该图形称为塔板的负荷性能图。1、气相负荷下限线气相负荷下限线又称为漏液线,气相负荷低于此线将发生严重的漏液现象,气液不能充分接触,使板效率下降。由下式化工原理课程设计指导书(筛板塔)可近似取c0为前计算值不变,并将式how和 lh关系代入上式

56、整理之后,可得分离乙醇水板式精馏塔设计- 43 -其中由已知数据可得4410941.3117.145.8517635.01173.010594.1a3310932.810855.10399.013.00056.0b43/2410303.4794.0/1069.3c所以2/13/2434)l10303.410932.8(10941.3hv由上述关系可做得气相负荷下限线,如图 12 之曲线 1。2、过量雾沫夹带线过量雾沫夹带线又称为气相负荷上限线,放映出不发生严重雾沫夹带现象的最高气相负荷,它是一条直线。当气相负荷超过此线时,表明雾沫夹带现象严重,雾沫夹带量过大,使板效率严重下降,而此时的雾沫夹带

57、量 ev一般大于 0.1kg 液/kg气。令可容许的雾沫夹带最大量为 0.1kg/kg 气1 . 05 . 20057. 02 . 3owwtvhhhue其中vvaavut987.01173.013.10分离乙醇水板式精馏塔设计- 44 -即:1 . 0)0101. 00399. 0(5 . 240. 0987. 037.190057. 02 . 3v3/2l061. 0224. 2v由上述关系可做得气相负荷上限线,如图 12 之曲线 2。3、液相负荷下限线若操作的液相负荷低于液相负荷下限线时,表明液体流量过小,板上的液流不能均匀分布,气液接触不良,易产生干吹、偏流等现象,导致塔板效率的下降。

58、对于平直堰,通常按堰上液层高度 how=0.006m 作为最小液体负荷的下限考虑,故液相负荷下限线方程为:006. 01084. 23/23wlowlveh其中 e 为流量收缩系数,一般可取 e=1 计算。液相负荷下限线表示出为保证板上液体均匀分布的最低液相负荷,它是一条与纵轴平行的竖直线。006. 0794. 036001084. 23/23lvv=1.33910-4 m3/h由上述关系可做得液相负荷下限线,如图 12 之曲线 34、液相负荷上限线若操作的液相负荷高于液相负荷上限线时,表明液体量过大,此时,液体在降液管内的停留时间过短,进入降液管内的气泡来不及与液相分离而被带入下层塔板,造成

59、气相返混,使塔板效率下降了。分离乙醇水板式精馏塔设计- 45 -以 =5s 作为液体在降液管中停留时间的下限,由下式=(afht)/ls=5故 ls =(afht)/5=(0.08160.40)/5=0.006528m3/s据此可以作出与气体流量无关的垂直液相负荷上限线 45、液泛线当降液管排液能力不足,液体仍不断加入,降液管内液位上升至上层塔板溢流堰顶,影响上层塔板的排液,导致塔板上积液增加直至淹塔,这现象称为液泛。发生液泛时气体通过塔板的压降急剧上升,出塔气体大量带液,正常操作受到破坏。可见正常操作的塔设备不允许发生液泛。若操作的气液负荷超过液泛线时,塔内将发生液泛现象,使塔不能正常操作。

60、液泛可分为降液管液泛和液沫夹带液泛两种情况,通常对降液管液泛进行验算。为使液体能由上层塔板顺利地流入下层塔板,降液管内需维持一定的液层高度 hd。令 hd=(hthw)再由 hd=hp+hl+hdhp=hc+hl+hhl=hlhl= h w +how联立得 ht(-1)hw=(+1) how+ hc + hd + h忽略 h,将 how与 ls、hd 和 ls、hc 与 vs 的关系代入上式,得av2=b-cl2-dl2/3 分离乙醇水板式精馏塔设计- 46 -式中a=3.93410-9/(aoco)2(v/l)b=ht(-1)howc=1.1810-8/(lwho)2d=2.8410-3e(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论