船用柴油机发展史_第1页
船用柴油机发展史_第2页
船用柴油机发展史_第3页
船用柴油机发展史_第4页
船用柴油机发展史_第5页
已阅读5页,还剩35页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、船用柴油机发展史船用柴油机百年发展简史霹雳贝贝鸣谢 超大 LADON 兄 2011 年 9 月一柴油机的诞 生自从 18 世纪末瓦特改良蒸汽机以来,蒸汽机成为推动世 界发展的动力。 1805 年,富尔顿发明了实用的蒸汽机船,从 此以后很多船舶开始用上了蒸汽机。不过早期的蒸汽机工作 压力很低,结构极其笨重,效率不到5%。19 世纪初,改进蒸汽机,提高热效率就成为许多科学家和工程师毕生追求的 目标。法国人萨迪.卡诺(Sadi Carnot, 1796-1832)就是其中 杰出的代表。卡诺认为,要想改进热机,只有从理论上找出 依据。因此他从热力学理论的高度着手研究热机效率,提出 了著名的“卡诺循环”

2、 。 图 1.1 热力学大师萨迪 .卡诺图 1.2“卡诺循环” P-V (压力-体积)图“卡诺循环”是一个理想 的过程,分四个阶段。 1-2,可逆等温膨胀过程。 2-3, 等熵 膨胀过程。 3-4,可逆等温压缩过程: 4-1 ,等熵压缩过程。 工质经过这四个过程循环后,吸收能量,对外做功,随后又 回到原来的状态。卡诺循环只是一个理想状态的热机,现实 中没有任何热机的效率可以达到卡诺热机的效率,但它却为 分析热机效率提供了基础的方法。从卡诺循环的分析可以看 出,增大工质循环的初始温度与循环终了温度之间的差值, 是提高热机效率最为简便的途径。迄今为止,热机效率所有 重大的提升和改进都是在这个准则指

3、导下进行的。 有了理论指导后,蒸汽机功率和效率都得以提高,这种提高 主要取决于蒸汽参数的提高。初期蒸汽机的蒸汽压力仅为0.110.13兆帕(一标准大气压=0.101325兆帕,仅相当于大 气压)。19世纪初蒸汽压力达到 0.350.7兆帕,到1840年, 最好的凝汽式蒸汽机总效率已经能达到 8%。随着蒸汽参数 和功率的提高,蒸汽已不可能只在一个汽缸中膨胀,必须在 相连的汽缸中继续膨胀,于是出现了多级膨胀的蒸汽机。由 于蒸汽机受到润滑油闪点的限制,所用蒸汽的最高温度一般 都不超过400C。机车,轮船等移动式蒸汽机的工作温度还 要略低一些,多数不高于350 C。考虑到膨胀的可能性和结构的经济性,常

4、用蒸汽压力在 2.5 兆帕以下。由于蒸汽参数 受到限制,从而也限制了蒸汽机功率和效率的进一步提高。 为了避免蒸汽机粗大笨重、结构复杂、难以小型化的缺点, 欧洲的发明家们纷纷开始研究新型热机。德国工程师奥托( N.A Otto 18321891 )通过效仿卡诺循环的研究方法,提 出了“奥托循环” ,即定容加热循环原理。 “奥托循环”的基 本工作原理为,将可燃气体在气缸中压缩,再点燃压缩可燃 气体,产生很强的推力,从而提高热效率和输出功率。奥托 创建的内燃机工作原理一直在现代汽车发动机(汽油机)上 沿用至今。 1876 奥托的第一台内燃机为单缸卧式,功率 3.2 千瓦(4.4 马力),四冲程, 转

5、速为 156转/分,压缩比为 2.66, 热效率达到 14%,大大超过了蒸汽机。不过当时石油工业还 处于襁褓时期, 更谈不上汽油 (第一台汽油机还要等到 1883 年才问世),因此这台发动机采用的燃料是煤气。由于煤气 存储不便,存在安全性较差的缺点。同时由于奥托的内燃机 采用的是点燃方式,当时完善的电点火装置还没有发明,点 火装置可靠性也不佳。 图 1.3 内燃机的发明人 -奥托 一名德国裔的法国工程师决定改进内燃机,他就是鲁道夫 . 狄塞尔( Rudolf Diesel , 1858-1913)。狄塞尔 1856 年出生于 法国巴黎,父母是德国移民。 1870 年普发战争爆发后,他移 居到德

6、国奥格斯堡的叔叔家,在那里他就读职业学校。 1875 年,他进入慕尼黑科技大学学习, 5 年后以第一名的成绩毕 业并返回巴黎从事制冷专业。在工作中,他深感蒸汽机的效 率低下, 于是萌发了设计新型发动机的念头。 1890 年他回到 柏林,不久后他建造了一台以氨气为动力的发动机并进行研 究,但不幸的是,发动机的爆炸差点要了他的命。出院后他 继续研究工作,并在 1893 年发表了著名的论文 Theory and Construction of a Rational Heat-engine to Replace the Steam Engine and Combustion Engines Known

7、 Today (取代现有蒸 气发动机和内燃发动机的合理的热发动机理论和设计 ),在 论文中他提出了定压加热循环原理(即“狄塞尔”循环) , 并申请了专利。 图 1.4 柴油机的发明人鲁道夫 .狄塞尔为了 实现他的想法,他找到德国奥格斯堡机器制造厂,也就是今 天大名鼎鼎的曼恩( M.A.N )公司的前身。 1897 年,他成功 制造了一台能安全运转的热机。在奥格斯堡他亲自启动了发 动机,那一瞬间,热机领域一次新的科技革命诞生了。虽然 这台单缸引擎的功率仅为 14 瓦,但效率已经远远超过当时 的蒸汽机和已经发明的奥托式内燃机,达到了前所未有的 26%。现在,这台机器的复制品(原件已经不幸在二战中损

8、 毁)被收藏在慕尼黑德意志科技博物馆里,狄赛尔也永远被 人们铭记。今天英文的柴油机一词“ Diesel Engine ”就是以 他的姓氏来命名的。不过当时柴油机并没有使用柴油,使用 的是植物油。实际上, “Diesel Engine ”更准确的中文翻译应 该是“压燃式发动机” ,不过“柴油机”的名称已经深入人 心,也不必苛求了。 图 1.5 世界上第一台柴油机狄塞尔柴 油机为单缸四冲程柴油机,虽然柴油机经过了 100 多年的发 展,但其基本原理都是基于狄塞尔提出的定压膨胀原理。柴 油机主要由气缸、活塞、连杆、曲轴、进气门、排气门、喷 油嘴等部件组成。 4 冲程柴油机的工作循环经历进气、 压缩、

9、 做功和排气四个冲程。柴油机在进气冲程吸人的是纯空气, 在压缩冲程接近结束时,由喷油泵将高压柴油通过喷油器以 雾状喷人气缸, 在短时间内与压缩后的高温、 高压空气混合, 形成可燃混合气。混合气温度大大超过柴油的自燃点,柴油 喷人气缸后,在很短的时间内即自行着火燃烧,燃气压力急 剧上升,温度急剧升高,在高压气体推动下,活塞向下运动 并带动曲轴旋转作功。废气则经排气门、排气管等处排人大 气。 图 1.6 四冲程柴油机的工作原理四冲柴油机在一个工 作循环中,只有一个冲程做功,其余三个冲程都是为做功冲 程创造条件的辅助行程。因此,单缸发动机工作不平稳,需 要通过飞轮等保证其圆周运动。现代柴油机大多采用

10、多缸结 构,在多缸发动机中,所有气缸的做功行程并不同时进行, 而尽可能有一个均匀的做功间隔。例如六缸发动机,在完成 一个工作循环中, 曲轴旋转两周即 720 度,曲轴转角每隔 120 度就有一个气缸做功。因而多缸发动机曲轴运转均匀,工作 平稳,并可获得足够大的功率。 虽然柴油和汽油同为内燃 机燃料,但柴油属于石油分馏中较重的馏分,馏出温度高, 粘度比汽油大,不易蒸发,然而其自燃点却低于汽油,故柴 油机内可燃混合气的形成和燃烧方式与汽油机不同。柴油机 汽油机基本原理 定压加热循环 定容加热循环燃料混合方式 柴油直接喷入汽缸,在 汽缸内实现油气混合 向汽缸喷入已经混合好的汽 油、空气混合;一般使用

11、化油器(现代汽油机使用电子喷射 方式)产生混合气体点火方式 压燃、依靠汽缸的高 温、高压使用柴油自燃点燃方式,一般使用电火花塞发火压缩比 最高可达 20 以上 一般为 10 以内柴油机和汽油机的差异汽油机与柴油机比较各有特点; 汽油机转速高,质量小,噪音小,起动容易,制造成本低,多用于汽车等小功率的场合;柴油机压缩比大,热效率高,输出功率大, 经济性能和排放性能都比汽油机好。 一般来说, 柴油机的气缸数越多、缸径越大、活塞行程越长、汽缸压力 越大,输出功率也就越大。当今,柴油机在重型汽车、重型 机械、火车和船舶推进、电站等方面均有广泛应用。二柴 油机应用于船舶推进 狄塞尔本想将柴油机用于汽 车

12、,但是直到他去世,这个梦想也没有实现。不过随着石油 的开发,柴油却率先在船舶推进中得到应用。 1903 年,俄国 的“万达尔”号(Vandal )油轮和法国的“佩迪特.皮埃尔”号(Petite-Pierre)成为最早装备柴油机的船舶,她们几乎同 时建成服役,至于谁更早一些,不同的资料有不同的看法。“万达尔” 号由卡尔 .哈格林( Karl Hagelin )为俄国的石油巨 头-诺贝尔兄弟公司(Branobel)设计(该公司是诺贝尔家族 在俄国投资的石油公司, 伟大的发明家阿尔弗雷德 .诺贝尔就 是出自该家族) 。哈格林十分具有远见,他设计了一艘内河 油轮,这艘船可以将里海的石油从伏尔加河下游经

13、内陆河道 直接运到圣彼得堡或芬兰,距离超过 1800 英里!以前这条 路线上主要是通过内河驳船进行运输,采用蒸汽拖船拖曳, 长距离的经济性不是很好。哈格林觉得新兴的柴油机可以用 来一试。他考虑到内河船舶操作的灵活性,调速和倒车等因 素,决定采用柴油机电力驱动方式。他聘请了船舶设计师约 翰尼.约翰逊(Johny Johnson)进行整体设计,并由索莫夫船厂( Sormovo shipyard )建造。“万达尔”号吨位为 800 吨, 长 74.5 米,宽 9.55 米,吃水 2.4 米,船上采用 3 台瑞典柴油 机公司( Swedish Diesel )和 ASEA 公司合作生产的柴油机, 缸径

14、 290 毫米,行程为 430 毫米,转速 240 转 /分,单台输出 功率 120 马力。该船的柴油机和发电机放在船的中部,推进 电机在船尾部, 可直接驱动三个螺旋桨, 航速可达 8.3 节。 图 2.1 “万达尔”号 次年,诺贝尔兄弟公司又投资建 造了一艘更大油船“萨玛特”号(Sarmat)。这艘船排水量1,150 吨,载重 750 吨。她采用了 2 台路德维格 .诺贝尔( Ludwig Nobel)公司的180马力柴油机(缸径 320毫米,行程为420 毫米)。她摒弃了电力传动,由柴油机直接驱动螺旋桨,籍 此降低了 1 5%的传动损失,航速达 8.6 节。由于俄罗斯北方 寒冷,河流封冻,

15、两艘油船仅在夏天使用, “万达尔”号运 行了 10 年时间,而“萨玛特”号则一直使用到 1923 年。 法国的“佩迪特 .皮埃尔”号则是一艘柴油机动力平底驳船, 该船装一台 25 马力的柴油机, 1903 年 9 月,她开始在马尔 纳-里昂的运河上开行。 柴油机的发明人狄塞尔还曾受邀上船 参观过,并签名留念。 图 2.2 “佩迪特 .皮埃尔”号的照片, 上有狄塞尔签名第一艘柴油机动力军舰是 1904 年法国建造的“埃吉瑞特” 号( Aigrette )潜艇,同型艇共两 艘。该艇水面排水量 202 吨,水下排水量 222 吨,长 /宽 /吃 水分别为 41.3/3.0/2.8 米,武器为两具 4

16、50 毫米鱼雷发射管, 船员 16人。她装有一台 4 缸 4冲程柴油机。潜艇水上航行 时采用柴油机直接推进螺旋桨,并为蓄电池充电。水下航行 切换到蓄电池 -电机,水上航速 9 节,水下航速 7.1 节,续航 力 500 海里/5 节,水下为 45海里/4 节。 与原先潜 艇上普遍使用的汽油机相比,柴油机在发火时不需要复杂的 点火装置,无汽油挥发爆燃的危险,产生的废气中有毒气体 相对较少,具有热效率高、安全可靠等优点。随后,英国也 开始装备柴油机动力的 D1 级潜艇,柴油机逐渐成为常规潜 艇的标准动力配置, 直至今日。 图 2.3 英国 D1 型潜艇模型 三柴油机迈向远洋早期柴油机主要应用于内河

17、船舶和近岸 潜艇,在经历了最初的发展阶段后,柴油机技术日益成熟, 单机功率和可靠性都有大幅提高,为柴油机航向大海和远洋 创造了基础。 1910 年,意大利坎蒂里公司( Cantieri Navali Riuniti )建造了一艘 678 吨的海轮,命名为“罗马格那” 号(Romagna),双桨推进。该船采用了两台瑞士苏尔寿 (Sulzer) 公司的 4缸二冲程柴油机,缸径 310 毫米,行程 460 毫米, 单台输出功率为 280 千瓦( 370 马力)。同年,盎格鲁 .萨克 森( Anglo-Saxo )石油公司(荷兰皇家壳牌的子公司)订造 了一艘 1,216 载重吨(排水量 2,047 吨

18、)的单螺旋桨油轮 “瓦 卡纳斯”号(Vulcanus)。该船采用了一台370马力6缸4冲程柴油机(缸径 400 毫米,行程 600 毫米)。这艘船也是 有史以来第一艘入籍劳氏船籍社的柴油机动力船舶。她被用于在新不列颠岛和新加坡之间运输石油。在运营过程中,柴 油机的节能效果得到充分体现,日均消耗燃油为 2 吨,而同 类型的蒸汽机船每天需要耗煤 11 吨。船上轮机部门的工作 人员也减少了一半,该船一直服役到1932 年。 图 3.1 “瓦卡纳斯” 号油轮 1912 年,是人类航海史上重要的一年。这 一年,第一艘真正意义上的大型远洋轮船 -“锡兰迪亚”号(MS Selandia, MS 为 Mote

19、r Ship )建成,该船由丹麦远东公司 (East Asiatic Company )公司投资。远东公司成立于 1897 年,公 司的主要是业务是经营从丹麦首都哥本哈根到泰国首都曼 谷和远东地区的航线,从事货物和人员运输。这是一条极其 漫长的航路,出北海、经英吉利海峡南下,穿过直布罗陀入 地中海,经苏伊士运河进入红海,再横渡印度洋,航程超过 1 万海里, 以平均速度 12 节计算, 海船需要连续航行约一个 多月的时间。 图 3.2 世界上第一艘远洋柴油机轮船, “锡兰 迪亚”号 图 3.3 “锡兰迪亚”号的绘画“锡兰迪亚”号由丹麦哥本哈根的伯梅斯特和韦恩船厂(Burmeister&a

20、mp; Wain ,简称 B&W )建造。 B&W 创立于 1846 年,由伯梅斯特和韦恩两人创立,早期主要从事蒸汽机和蒸 汽机轮船的生产。 1898 年 B&W 公司从狄塞尔那里获得 了柴油机在丹麦的生产特许权,并于 1903 年制造出第一台 柴油机。“锡兰迪亚”号为一艘客货轮,她于 1911年 11 月下水, 1912 年 2 月交付使用。长 112.8 米 ,宽 16.8 米,总吨位 4,964 吨,载重量为 6,800 吨。她采用了两台 B&W 自产的 DM8150X 型柴油机( 8 缸 4 冲程、缸径 530 毫米、行程

21、 750 毫米,单机功率 1,250马力),双桨推进, 航速可达 12 节以上。 图 3.4 B&W DM8150X 型柴油机 “锡兰迪亚”号采用三岛型布局,有艏楼、中楼和尾楼。艏 楼后部、中楼和尾楼之间是货舱,船上没有的烟囱,而是通 过前桅进行排烟。除了载货外,船上还有 20 间一等单人客 房,每两间房间共享淋浴和卫生设施。 完工后, 她直航远东, 并顺利返回,全程 2.18 万海里。“锡兰迪亚”号远航的成功, 证明柴油机完全适应远洋轮船的需要。 1936 年,她被出售给 巴拿马的一家公司。二战爆发后,她被日本征用, 1942 年 1 月,在日本御前崎市外海触礁沉没。 “锡兰

22、迪亚”号同型船 一共建了三艘,另外两艘分别为“费奥尼亚” (Fionia)号和 “日德兰蒂亚” ( Jutla n d i a )号。柴油机在大型远洋轮船上的 应用,标志着柴油已经日渐成熟。虽然在绝对数量上柴油机 船舶还很少,但柴油机的前景已经被人们所认识。 1912 年, 瑞士苏尔寿公司为了展示柴油机的潜力,投资建造了一台缸 径为 1,000 毫米,冲程 1,100 毫米的 1S100 型单缸巨型柴油 机。这台柴油机在 150 转时可发出 1,470 千瓦( 2,000 马力) 的功率,它创造的柴油机缸径记录直到 1960 年代才被打破。 该机研制成功也对船用柴油机向大型化发展产生了深远的

23、影响。苏尔寿公司在 1S100 型柴油机采用了二冲程横流扫气结构,这种设计也成为苏尔寿柴油机的标志型结构,并一直 沿用了 70 年。 图 3.5 苏尔寿 1S100 型柴油机 1913 年初,德国的汉堡 -美洲公司 6,500吨级客货轮“蒙特 .佩内多” 号(Monte Penedo)是第一艘使用二冲程柴油机的大型远洋 轮。长 /宽/深分别为 350/50/27 英尺( 1 英尺= 30.48 厘米), 载重 4,000 吨,总吨位 6,500 吨。她安装有两台瑞士苏尔寿 公司制造的 4S47 型二冲程柴油机, 缸径 470 毫米、行程 680 毫米、 160 转时可输出功率 860 马力。同

24、时她也是德国第一 艘大型柴油机远洋轮。 图 3.6 “蒙特 .佩内多”号 图 3.7 苏 尔寿4S47型二冲程柴油机1914年,第一次世界大战爆发,德国建造了 300 多艘潜艇,除了早期的 U1-U18 煤 油动力内燃机潜艇外,从U19后全部采用柴油机动力。 这些潜艇分别由日耳曼尼亚、 皇家、布洛姆福斯等多家船厂承建。 德国潜艇分为中型潜艇、 大型 /巡洋 /运输潜艇、 UB 近海潜艇、 UC 型近海布雷潜艇、 UE 型远洋布雷潜艇等不同种类。 战争 中, U 型潜艇以其卓越的水下机动性和作战能力在海上出尽 了风头,给协约国商船和战舰以重大打击,共击沉协约国商 船 6,000 艘,注册吨位 1

25、,200 万吨,击沉军舰 150 艘,德国 自身也损失潜艇 178 艘。超强的续航能力和可靠性充分体现 了柴油机动力的优势,曼恩公司也开始在柴油机领域树立起 不可动摇的地位。在未来的几十年内,曼恩与丹麦 B&W 、瑞士苏尔寿等公司相互竞争, 并发展为船用大功率船用柴油机的巨头。 图 3.8 一战时潜艇的柴油机机舱 四船用柴油机的普及第一次世界大战后,柴油机性能有了 新的提高, 柴油机的装船数量开始上升, 1921 年左右柴油机 已经开始在客轮上使用。 1922 年,新西兰联合航运公司 ( Union Steamship Co of New Zealand )向英国的菲尔费尔德

26、(Fairfield )船厂订购了一艘大型柴油机动力客轮“阿朗伊” 号( Aorangi )。该船全长 600 英尺,宽 72.2英尺,吃水 29.9 英尺,17,491总吨,安装4台苏尔寿ST70型6缸2冲程柴 油机(缸径 700 毫米,行程 990 毫米),单台输出功率 3,177 马力, 4 轴,航速 17 节。船上有 440 个一等、 300 个二等和 230 个三等铺位。经过 2 年的建造,“阿朗伊” 号建成,开 始在温哥华 -悉尼航线上服务。 二战爆发后她先后被改造为运 兵船,医院船等。战争期间她一共运输了 3.6 万名士兵和 5 千多名难民, 战后她恢复运营, 并于 1953 年

27、拆毁。 图 4.1 “ 阿 朗伊” 号客轮柴油机装船后的良好表现改变了人们原先认为柴油机不适合大型船舶使用的偏见。 1925 年,瑞 典-美洲航运公司( Swedish America Line )向英国阿姆特朗 . 威斯沃斯( Armstrong Whitworth )公司订购的“格里普斯霍 姆”号( Gripsholm )交付。该船 18,134总吨,采用 2台 B&W 公司建造的 B&W840D 型 4 冲程柴油机(缸 径为 840毫米,双动),总功率达 9,930千瓦( 1 3,240马力)。 她也是第一艘采用柴油机动力的跨大西洋定期班轮。不久后英国的哈

28、兰德 .沃尔夫船厂为联合城堡航运公司( Union Castle Line )建造了超过 2 万吨的“卡那封城堡”号。该船 上安装有哈兰德 .沃尔夫船厂购买 B&W 公司专利生产的 4 冲程双动柴油机, 双机,总功率为 1.1 万千瓦( 1.5 万马力)。 图 4.2 “格里普斯霍姆”号客轮 图 4.3 B&W 840D 型 4 冲程双动柴油机 1920 年代末,英国约翰 .布朗公司采用苏尔 寿专利技术制造了 5缸S90型柴油机,具有900毫米缸径, 是当时世界上最大缸径的柴油机,单机功率为 4,650 马力。 这些机器被装到两艘“兰基提奇”级( Rangiti

29、ki )客轮船上, 每船装机两台。 图 4.4 “兰基提奇”号客轮1926年 12 月,总吨位超过 32,650 吨的“奥古斯塔斯” 号( Augustus) 客轮在意大利安萨尔多船厂建成下水,她属于意大利 Navigazione Generale Italiana 公司。她的姊妹船“罗马”号( SS ROMA )是一艘传统的蒸汽轮机客轮,而“奥古斯塔斯”号 则装备了 4 台曼恩公司建造的 6 缸双动二冲程柴油机(缸径 700 毫米, 行程 1,200 毫米, 总功率 2.8 万马力)。该船长 219 米,宽 25 米, 4 轴,航速 22 节,载客 2,210 人,内部装饰 豪华。 1927

30、年 6月她完成首航, 是当时世界上最大和最豪华 的柴油机动力客轮。 1929 年经济危机后, 跨大西洋的运输明 显萎缩。意大利人主要将该船作为游船使用。 1932 年,独裁 者墨索里尼强迫 Navigazione Generale Italiana 与意大利国有 的意大利航运公司( Italia Line )合并,因此“奥古斯塔斯”号重新采用了意大利航运公司的涂装。1933年1月 4日,她满载富豪从纽约出发,完成了为期 129 天的环球巡游,途经 全球数十个港口, 其中就包括中国香港和上海。 二战爆发后, 两艘姊妹船一度闲置。 1941 年,意大利法西斯开始将 “罗马” 号客轮改装为航母“天鹰

31、” 号( Aquila ),该舰主要参数为, 排水量:标准 23,350 吨/满载 27,800吨,总长 232.5 米,宽 29.4 米,吃水 7.31 米。武备:单管 135 毫米炮 8 座,单管 65 毫米高炮 12 座,六管 20毫米炮 22 座,载机 26 架。动力: 蒸汽轮机 2台,4 轴,14.2万马力,航速 30节,续航力 4,150 海里/18 节。舰员 1,165名,另加航空人员 243名。直到纳粹 投降时,“天鹰”号的改装工作都没完成。 1942 年 9 月意大 利人又开始将超过 3万吨的“奥古斯塔斯” 号客轮改装为“鹞 鹰”号(Falco)航母,基本布局与“天鹰”号号类

32、似。“鹞鹰”号同样命途多舛,意大利投降时,改装工作还没完成, 之后她被德军凿沉在热那亚港以阻碍盟军船只进入。这两艘 航母最终都在上世纪 40 年代末期被拆解。图 4.5 “奥古斯塔斯”号豪华邮轮 图 4.6 “天鹰”级航空母舰 1928 年,著名的英国白星轮船 公司(White Star Line , “泰坦尼克”号即属于该公司所有) 看到柴油机的优越性后, 向其长期的合作伙伴哈兰德 .沃尔夫 公司订购了一艘巨型柴油机客轮“海洋”(Oceanic)号。这 艘船长度超过 300 米,总吨位超过 6万吨,有 3 个巨大的烟 囱。船上计划安装 40 台柴油机,并通过齿轮减速箱驱动 4 个螺旋桨。随着

33、 1929 年经济危机的爆发,这艘巨轮最终只 能停留在绘图板上。船舶史专家们评论说如果她建成的话, 规模将不亚于“玛丽王后”号和“诺曼底”号。图 4.7 想象 中巨轮“海洋”号经济危机过后,各国经济开始恢复。 1930 年代末,荷兰的“奥兰治”号( ORANJE )成为动力最强劲 的柴油机动力船舶。船上安装有 3 台苏尔寿 12 缸 SDT76 式 二冲程柴油机,该机有 12 个 760 毫米缸径的气缸,总功率 达到 27,600 千瓦( 37,551 马力,转速为 145 转 /分时,单机 功率超过了 1 万马力),是二战前船用柴油机的最高水平。 “奥兰治”号也是一艘外形极其现代化的客轮,她

34、由荷兰航 运公司( Netherland Line )出资建造, 1938 年在阿姆斯特丹 下水。荷兰女王威廉 .明娜亲自主持下水典礼并为其命名。 “奥 兰治”号总吨位为 20,117吨,长 200米,宽 25.5 米,3 轴, 最大速度可达 26 节,可载客 760 人。她是当时最快的柴油 机船,外观也颇具美感。她主要用于荷兰和和荷属东印度群 岛的旅客运输, 1939 年 9 月初期, 她从阿姆斯特丹启程航向 爪哇,由于战争爆发,未能返回荷兰。 1942 年,日军进占荷 属东印度群岛后,她不得不退往澳大利亚,并在那里改装成 医院船,战后她恢复运营。 1960 年,她还进行了环球航行。 196

35、4 年她被出售给一家意大利公司, 并接受彻底的翻新。 她 的船首被延长了 4.9 米,总吨位也上升到 24,377 吨,载客量增加到 1,230人。 1972 年起,她又被改装成一艘游轮,巡游 于百慕大海域。 1979年 3月 30日,船上燃起大火,幸亏大 多数旅客已经上岸,船上也无人员伤亡。 4 天后大火扑灭, 船也坐沉海底。一支德国打捞队将其浮起,船东准备将其卖 给中国台湾的拆船厂拆毁,她被成功的拖过巴拿马运河,但 最终没有熬到目的地, 由于大火将船板破坏严重, 造成漏水, 她还是沉没于太平洋的万顷波涛之中。 图 4.8 “奥兰治” 号邮轮 到二战前,营运的内燃机船舶的总吨位占远 洋船舶总

36、吨位的比重不断上升,柴油机船队的规模已经达到 世界商船规模的 20%以上,而 1920 年,这个比例仅 4%。而 新建船舶中,柴油机装船比例已经超过50% 。五柴油机的技术进步 1920年1930 年末,是柴油机技术发展的黄金时代, 柴油机越造越大,功率越来越高。新技术的出现促进了柴油 机的发展,主要技术革新来自于燃油喷射的改进和增压技术 的采用。 在狄塞尔的柴油机设计中,使用的是气 动式燃料喷射系统。这套系统利用压缩空气将柴油喷入气缸 中,并达成良好的雾化,与空气混合形成可燃混合气,自动 着火燃烧。由于柴油机的压缩比较高,气缸内的压力很大, 要把柴油喷入气缸并雾化,空气喷射压力必须远大于气缸

37、压 力。因此需要一整套专用的压缩空气生产、储存设备,还需 要一套冷却设备降低压缩空气的温度。这些附属装置庞大笨 重,不仅增加了系统的复杂性,也使得故障发生的可能性增加了。空气压缩机本身也由柴油机驱动,会消耗掉大约 15% 的输出功率,从而使柴油机的可用轴功率下降,经济性受到 了一定的影响。 图 5.1 狄塞尔的空气燃料喷射系统,当时 使用的燃料为煤粉工程师们一直在思考如何摒弃笨重、复杂 又不太可靠的空气压缩机、高压储气罐等设备。 1910 年,英 国维克斯( Vickers )公司的工程师詹姆斯 .麦克里基( James McKechnie )提出了机械喷射的方案,并申请了专利。此举 大大提高

38、了喷射效率,喷油压力大为提高(机械喷射可使喷 油压力可以超过 140bar(1bar=0.1 兆帕, 140bar 约 140 个大 气压,而采用空气喷射,仅仅能达到 7 兆帕),喷油压力的 提高使燃料的雾化程度提高,和空气能更均匀的混合,燃烧 更充分,从而发出更大的功率。图 5.2 McKechnie 的机械式喷油系统1922年,德国的博世公司(Borsh)进一步改进了 机械喷射结构,采用了紧凑且适用于高压的柱塞泵结构,并 投入批量生产。从此柴油机部件生产向专业化分工发展,最 终形成了产业化的规模。博世公司也逐步发展成为专业化的 内燃机燃油喷射控制系统和汽车零部件供应商和技术领导 者。193

39、0 年代后,船用柴油机向大功率方向发展,二冲程的 使用日趋普遍。对于两台气缸直径、活塞行程及转速等相同 的柴油机, 二冲程柴油机在一个循环中有 1/2的冲程在作用, 而 4冲程柴油机仅有 1/4 时间做功,因此二冲程的输出功率 要明显优于四冲程。实际上由于考虑到二冲程柴油机气缸上开有气口而使工作容积有所减少,机械传动的扫气泵也要消 耗一定功率等因素,二冲程柴油机的功率只能增大6080。二冲程柴油机与四冲程柴油机基本结构相同,主要差 异在配气机构方面。二冲程柴油机没有进气阀,有的连排气 阀也没有,而是在气缸下部开设扫气口及排气口;或设扫气 口与排气阀机构。二冲程柴油机还专门设置一个由运动件带 动

40、的扫气泵及贮存压力空气的扫气箱,利用活塞与气口的配 合完成配气,从而简化了柴油机结构。 图 5.3 二冲程柴油 机工作原理二冲程柴油机的工作与原理为: 第一冲程 -活塞从 下止点向上止点运动。当活塞处于下止点时,排气阀和进气 孔已打开,扫气室中的压缩空气便进入气缸内,并冲向排气 阀,这动产生清除废气的作用, 同时也使气缸内充满新空气。 当活塞由下止点向上止点运动时,进气孔首先由活塞关闭, 然后排气阀也关闭; 空气在气缸内受到压缩。 第二冲程 -活塞 从上止点向下止点运动。活塞行至上止点前,喷油器将燃油 喷入燃烧室中,压缩空气所产生的高温,立刻点燃雾化的燃 油,燃烧所产生的压力,推动活塞下行,直

41、到排气阀再打开 时为止。燃烧后的废气在内外压力差的作用下,自行从排气 阀排出。当进气孔被活塞打开后,气缸内又进行扫气过程。 二冲程内燃机换气后,气缸内残余多少废气,或者说气缸内 能充入多少新鲜充量,直接影响内燃机性能。二冲程内燃机 没有单独的排气冲程和进气冲程,不能利用活塞的推挤作用清除废气,要使气缸清扫干净比较困难,难以得到高的扫气 质量。因此,改进二冲程内燃机的扫气作用是一项重要的工 作。二冲程内燃机主要有横流、回流和直流 3 种扫气方式。 横流扫气 回流扫气 直流扫气结构形式 扫、排气口分别布置在气缸下部的两侧扫气口和排气口分别布置在气缸下部的同一侧有气口 气门式和气口 气口式(即对置活

42、塞式)之分工作原理 新 鲜空气横越气缸径直流向排气口 扫气流充入气缸 后先向上流动,再折转流向排气口,在气缸内形成扫气回流 扫气流由扫气口进入气缸,沿气缸轴线单向流动,同时绕气 缸轴线旋转,将废气从气缸顶端排气门排出特点 结 构简单,废气清除得不干净,现已很少采用 扫气质 量较高, 结构也简单, 获得广泛应用 扫气质量最好, 应用广泛,尤其适用于长行程船用柴油机原理图 二冲程柴油机扫气形式对比表 在二战前,双动式的 二冲程柴油机比较流行。这种柴油机在活塞的上下两边都设 有燃烧室, 可以推动活塞在两个方向都做功, 因此称为双动。 双动比单动能输出更大的功率,双动柴油机的设计与蒸汽机 的结构颇为相

43、似。不过双动柴油机的结构比较复杂,而且活 塞杆穿透气缸,因此对气密要求很高,现代柴油机已经不再 采用这种双动的方式了。 图 5.4 双动式柴油机采用增压技 术在柴油机的发展中是一个里程碑,增压技术显著提高了进 气压力,空气的压缩比进一步提高,在同等条件下,增压显 著减少了柴油机的尺寸和重量, 提升了输出功率。 1920 年代, 二冲程柴油机的兴起后,在排气过程中就必须用高压空气扫 除气缸中的废气,并吹入新鲜空气,因此增压器的作用就更 为重要了。早期的机械增压器直接用发动机曲轴带动往复式 增压泵向扫气箱中充气,机械结构比较复杂。 1905 年,瑞士 工程师布奇(Alfred B tchi)提出了

44、采用柴油机废气驱动涡轮 增压器进行增压的原理,也就是废气涡轮增压,并申请了专 利。废气涡轮增压器是利用发动机排出的具有较高能量(通 常可占燃烧能量的 50%)的废气进入涡轮并膨胀作功,废气 涡轮的全部功率用于驱动与涡轮机同轴旋转的压气机工作 叶轮,在压气机中将新鲜空气压缩后再送入气缸。废气涡轮 增压器结构简单,工作可靠,无需占用柴油机的轴端输出功 率,不但可以增大循环喷油量、大大提高输出功率,而且热 效率也得到了极大的提高,有利于改善整机动力性能、经济 性能及排放品质。 图 5.5 现代废气增压器 1915 年,布奇在 苏尔寿的柴油机上进行了废气增压的试验。 1927 年,曼恩公 司成功的在其

45、生产的 10 缸 4 冲程柴油机上安装了废气增压 装置,对功率提升非常明显,输出功率从 1,250 千瓦提升到 1,765 千瓦,提升幅度超过 40% 。曼恩增压柴油机成功安装 到 Preussen 和 Hansestadt Danzig 两艘船上,到 1929 年,废 气增压器已经安装到 79 台柴油机上。 图 5.6 HansestadtDanzig 号 从总体来说, 在二战前废气增压技术在柴 油机上的应用还不是非常普遍。这与当时旋转式的涡轮和压 气机研究尚处于入门阶段有关,同时钢铁工业也不能提供足 够的能经受长时间高温工况考验、可用于生产涡轮的耐热 钢。大规模使用废气涡轮增压技术还是 1

46、950 年代后的事情。 今天,除了一些小功率柴油机之外,废气涡轮增压器几乎已 经成为了柴油机的必备部件之一。 六二战中船用 柴油机在军事领域的应用二战前,柴油机还很少装备大型军 舰。但有一个特例,那就是德国。德国作为第一次世界大战 中的战败国,其海军受到凡尔赛和约的严格限制,被禁 止建造排水量超过一万吨,主炮口径超过 280 毫米的军舰。 德国海军针对条约限制,开始积极探索柴油机在军舰上的应 用,并于 1928 年在“莱比锡”级轻巡洋舰上试验柴油机动 力。该级巡洋舰共建成两艘, 分别是“莱比锡”号 (Leipzig ) 和“纽伦堡”号(N trnberg)。舰长177米,宽16.3米,吃 水

47、5.65 米,排水量 8,380 吨(“纽伦堡”号有所增加,布局 有所变化)。两舰采用蒸汽轮机和柴油机混合动力,动力布 置非常独特,其中中间一轴采用 4台曼恩公司 2冲程 7 缸柴 油机驱动, 总功率为 12,400 马力; 外侧两轴仍采用蒸汽轮机 驱动,总功率 66,000 马力。这种动力配置并不成功,两种动 力装置必须同时使用,军舰的续航力也并不高,为 5,700 海 里/19 节。该级舰主要武器为 9 门 150 毫米炮和 6 门 88 毫米 炮,4座3联 533毫米鱼雷发射管,若干轻型高炮,还载有2 架水上飞机。 图 6.1 “莱比锡” 号轻巡洋舰德国人于 1929 年开始动工建造德意

48、志级舰,德国人称之为装甲舰( Panzerschiff )。由于主炮口径超出当时华盛顿海军条约 对巡洋舰的定义,其他国家海军称其为袖珍战列舰( Pocket Battleship )。“德意志” 级突出的优势是其 6 门 280 毫米主炮, 安装在 2座 3联装主炮塔内,以期在尽可能小尺度上集中最 大的火力。德意志级在受到排水量限制与追求重火力的情况 下,广泛使用焊接技术,从而节省舰体重量。 “德意志”级 装甲防护基本与当时的重巡洋舰相当,装甲总重量只占标准 排水量 20左右。“德意志”级的作战目的非常明确:火力 比当时只有轻装甲防护的重巡洋舰强,而 26-28 节的航速比 当时的战列舰快,使

49、其能避免与之交火。 “德意志”级设计 的首要问题就是如何尽可能地将排水量限制在一万吨内,但 又要满足袭击舰所要求的大航程和高速度。解决之道就是使 用柴油机作为动力源,在动力上她选用了8台 9缸曼恩 M9ZU 42/58 柴油机,采用齿轮减速箱并机驱动 2 部螺旋桨,输 出总功率达到 52,050 马力。这表明了德国海军对柴油机动 力和曼恩公司的信心。虽然柴油机在重量上并不比蒸汽轮机 更轻,但是油耗却远低于使用锅炉的蒸汽轮机,可使其达到 超长的航程, 达 8,000海里/20 节,远高于英美的巡洋舰。 图 6.2 曼恩 M9 ZU 42/58 柴油机“德意志”级同型舰三艘: “德意志”号(Deu

50、tschland)、“ 舍尔海军上将”号(Admiral Scheer)、 “格拉夫 .斯佩”号( Admiral Graf Spee )。二战中,三舰以其 优良的性能与皇家海军周旋,给英国的补给线以沉重打击。 不过柴油机也暴露出高速时震动大的缺点,同时德意志级的 速度也不是很高,如被敌方发现,很难摆脱,这成为“格拉 夫.斯佩” 号在拉普拉塔河口海战中覆灭的重要原因之一。尽管德国有将柴油机装到更大型军舰上的计划,但从实际情况 出发, 以后制造的 “沙恩霍斯特” 级战列巡洋舰和 “俾斯麦” 级战列舰均未再采用柴油机动力。 图 6.3 德意志级的动力 结构二战前,各参战国海军战前共有潜艇 660

51、多艘,战争期间共建成潜艇 1,800 多艘,绝大多数都是柴油机动力 潜艇。二战中,潜艇取得了骄人的战绩, 共击沉运输舰船 4,820 多艘、计 2,180 多万吨;击沉大型、中型战舰 500 多艘,其 中包括航空母舰 18艘、战列舰 5 艘、巡洋舰 34艘、驱逐舰 和护卫舰 372 艘、潜艇 76 艘。德国的“海狼”给几乎给英 国致命的打击,美国的“鲨鱼”则绞杀了日本的生命线。 早期潜艇在水面行驶时一般都用柴油机直接驱动螺旋桨,在 水下则切换到电机。美国 1928 年在 S3 号潜艇上试验了全电 推进,用柴油机驱动发电机,可同时为电池充电并通过电机 推动潜艇。战前美国海军已经完成了潜艇全电化推

52、进的工 作。战争中美国海军主要战场是太平洋的广袤海域,主力潜艇“小鲨鱼”级(GATO、和“白鱼”级(Balao、的吨位均 较大,超过 2,000 吨。她们采用全电动推进,这些潜艇装备 有 4 台柴油机,在水面航行时带动 4 个发电机,通过配电屏 控制,输出的电流可驱动推进电机并给蓄电池充电。这种全 电布局使动力输出更加灵活。以战争后期“白鱼”级使用的 通用 GM 16-278A 柴油机为例, 4 台并联可提供 5,400 马力, 使水下排水量 2,400 吨的“白鱼”级达到水上 20 节、水下 8.5 节的航速, 续航力达到 11,000 海里/10 节。全电潜艇虽然 先进,不过要到二战后才普

53、及。 图 6.4 二战美国潜艇主要 动力之一 GM 16-278A 柴油机 德国人在二战中制 造了大量的潜艇。与美国人不同的是,德国潜艇主要采用柴 油机和电机共轴推进方式。在水面上柴油机工作,柴油机直 接推动主轴和螺旋桨,并带动共轴的发电机为蓄电池充电, 下潜时,由蓄电池供电,带动共轴的推进电机。因此德国潜 艇一般都只装两台柴油机。以 TYPE VII 型艇(分 A/B/C/D 若干子型号)为例,长 50.5 米,宽 6.2 米,吃水 4.7 米,水 面排水量 769 吨,水下排水量 885 吨,艇员 44-52 人,有 5 座 533 毫米鱼雷发射管(艏 4 尾 1 )和 1 门 88 毫米

54、炮。该艇 装有 2 台曼恩 M6V 40/46 柴油机, 6 缸 4 冲程,涡轮增压, 转速 470-490 转,总功率 2,800-3,200 马力,水面航速可达 20.4 节,电机推力为 750 马力,水下航速为 7.6 节,续航力 8,190 海里/10 节。 图 6.5 TYPE VII C 型潜艇的柴油机和电机共轴 结构 图 6.6 曼恩 M6V 40/46 柴油机战争中德国人通过对缴 获荷兰潜艇的研究后发明了通气管,不过战争初期并没有大 规模使用。后来英美雷达技术的发展,使潜艇在水面航行越 来越困难。德国 U58 号潜艇在 1943 夏天安装了通气管,潜 艇不需要上浮就可以通过柴油

55、机航行并充电了。潜艇在通气 管状态航行时,由液压动作筒把活动进气筒升出水面一定高 度,空气进入进气筒内,并沿进气管路通向机舱供给柴油机 正常工作,废气则沿排气管路经由排气筒排入水中。活动进 气筒上部装有浮阀,当涌浪将使海水进入进气筒时,浮阀即 自动关闭,阻止海水经进气筒进入舱内。在导向筒上装有制 动器,以防止通气管升起后自动下降。 第二次世界大战后期, 德国潜艇广泛使用了通气管装置,大大增强了潜艇的隐蔽 性,战后建造的潜艇普遍装备有这种装置。 图 6.7 潜艇通 气管 二战中,美国建造了成千上万艘各型登陆舰 (艇),除少数装备汽油机外,大多数都以柴油机为主要动 力。以战争期间美国建造的 1,0

56、00多艘 LST 为例,标准排水 量 1,800 吨,满载排水量 3,900 吨,长 99 米,宽 15 米,吃 水艏部 2.29米,尾部 4.29米(轻载为 1.02和 2.24 米),采 用两台 GM 12-567 柴油机,总功率 2,000 马力。该机原本为 内燃机车动力,在战争期间不得不拿上登陆舰使用,不过也 可使登陆舰达到 11节航速。 LST 人员编制 111-144人,可运 载人员 800-1,000 人,或中型坦克 17 辆,或卡车 32 辆,还 携带有 2艘登陆艇,并装备 76 毫米炮等自卫武器。无论从 北非、西西里到诺曼底战役,还是在太平洋战场,以柴油机 为动力的登陆舰艇均

57、发挥了巨大的作用,为打败德意日法西 斯做出了重要贡献。 图 6.8 二战美国主要的登陆舰艇 二战中,还有无数的小型舰艇使用柴油机动力,如德国 S 型 鱼雷艇就装备有 3 台曼恩或戴姆勒 .奔驰的柴油机, 总功率近 4,000 马力,使这些近百吨,装备 2 具鱼雷发射管的小艇以 40 节以上的速度飞驰。 七当代船用柴油机 二战结 束后,船用柴油机经历了新一轮的发展,性能不断提高。从 上世纪 40年代-70 年代,大功率低速船用柴油机继续向大缸 径、大功率方向发展,同时进一步提高进气压力和气缸工作 压力,加大气缸排气量。在柴油机结构上广泛使用了焊接结 构,降低结构重量,普及涡轮增压,使用劣质燃油,

58、提高经 济性,这些都使柴油机技术有了飞跃发展。 在缸径方面, 1956 年只有 740-760 毫米,单缸功率只有 1,200-1,400 马力; 1960 年达到 840-900 毫米,单缸功率达 2,100-2,300 马力; 1965 年缸径达 930 毫米,单缸功率 2,750 马力, 1970 年,缸径超 过 1 米(达 1,060 毫米),单缸功率超过 4,000 马力, 1977 年 达到 4,600 马力。船用柴油机进入了黄金年代,在民船上完 全取代了蒸汽动力。 图 7.1 低速船用柴油机的平均工作压 力上升趋势图( 1Bar=0.1 兆帕) 1970 年代以后,爆发了两次 石

59、油危机,原油价格急剧上涨,运输成本不断提高,对燃油 经济性的要求日显突出,柴油机主要以提高单机功率、降低比重量以及提高可靠性和经济性为主要改进方向。 1980 年 后,世界柴油机市场向巨头集中。 1980 年,德国曼恩公司收 购丹麦 B&W 公司, 1997 年芬兰瓦锡兰公司与瑞士苏尔 寿公司合并,实现了强强联合。各大柴油机公司经过了一轮 新的整合,优胜劣汰之后,技术水平不断提高,机型有所减 少。在技术方面,除继续增大单缸功率外,电子控制技术也 在柴油机上得到广泛应用,燃油喷射、排气阀驱动、增压、 气缸润滑等都可由全电子驱动,柴油机的电子化、信息化和 智能水平不断提高,热效率进一步提高,并不断满足更高的 排放标准要求。 1)低速船用柴油机低速船用柴油机的特点 是转速低(低于 350 转 /分)、缸径大、冲程长、输出功率大, 多用于 1 万马力以上的柴油机。低速柴油机结构上一般采用 直列气缸、二冲程、多缸并联、十字头结构,具有大气缸, 长行程,高压缩等特点。现代低速柴油机的平均工作压力可 达 1.90-1.95 兆帕,油耗为 170 克 /千瓦小时以下,效率最高 可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论